
Intro to THREE.js

Dr. Mihail

November 2, 2015

(Dr. Mihail) THREE.js November 2, 2015 1 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

What is THREE

High-level library built on top of WebGL. THREE makes it possible to
author complex 3D graphics with minimal effort.

Features:

Highly object oriented

Many built in effects

Implements the concept of “scene” to which you can add/remove
objects during runtime

Cameras

Animation (skinning, forward kinematics, inverse kinematics, morph,
keyframe, etc.)

Lights

Materials

Shaders (access to full GLSL)

Geometry (plane, cube, sphere, torus, 3D text)

Data loaders (textuers and models)

(Dr. Mihail) THREE.js November 2, 2015 2 / 18

THREE

Basic idea

Scene

Camera

Lights

Action

(Dr. Mihail) THREE.js November 2, 2015 3 / 18

Download

Download three.js

threejs.org

The download will contain all the source code, including examples, etc.
You need the ./build folder.

(Dr. Mihail) THREE.js November 2, 2015 4 / 18

threejs.org

HTML

Basics: index.html

1

2 <!DOCTYPE html >

3 <html >

4 <head >

5 <link rel="stylesheet" href="./style.css">

6 <script src="./three.js" ></script >

7 </head >

8 <body >

9 <script src="./main.js" ></script >

10 </body >

11 </html >

(Dr. Mihail) THREE.js November 2, 2015 5 / 18

HTML

Basics: index.html

1

2 <!DOCTYPE html >

3 <html >

4 <head >

5 <link rel="stylesheet" href="./style.css">

6 <script src="./three.js" ></script >

7 </head >

8 <body >

9 <script src="./main.js" ></script >

10 </body >

11 </html >

(Dr. Mihail) THREE.js November 2, 2015 6 / 18

HTML

Basics: style.css

1 canvas {

2 position: fixed;

3 top: 0;

4 left: 0;

5 }

(Dr. Mihail) THREE.js November 2, 2015 7 / 18

HTML

Basics: main.js

1

2 // initialize WebGL and THREE renderer

3

4 var width = window.innerWidth;

5 var height = window.innerHeight;

6

7

8 var renderer = new THREE.WebGLRenderer ({

antialias: true });

9 renderer.setSize(width , height);

10 document.body.appendChild(renderer.domElement);

(Dr. Mihail) THREE.js November 2, 2015 8 / 18

HTML

Basics: main.js

1

2 // initialize WebGL and THREE renderer

3

4 var width = window.innerWidth;

5 var height = window.innerHeight;

6

7

8 var renderer = new THREE.WebGLRenderer ({

antialias: true });

9 renderer.setSize(width , height);

10 document.body.appendChild(renderer.domElement);

(Dr. Mihail) THREE.js November 2, 2015 9 / 18

Scene

Basics: main.js

1

2 // create scene object

3 var scene = new THREE.Scene;

4

5 // create simple geometry and add to scene

6 var cubeGeometry = new THREE.CubeGeometry (15,15,

15);

7 var cubeMaterial = new THREE.MeshLambertMaterial

({ color: 0xaaff44 });

8 var cube = new THREE.Mesh(cubeGeometry ,

cubeMaterial);

9 scene.add(cube);

(Dr. Mihail) THREE.js November 2, 2015 10 / 18

Camera

Basics: main.js

1 // create perspective camera

2 var camera = new THREE.PerspectiveCamera (45,

width / height , 0.1, 10000);

3 camera.position.y = 16;

4 camera.position.z = 40;

5 // add to scene and renderer

6 scene.add(camera);

7 renderer.render(scene , camera);

8 // create the view matrix (lookAt)

9 camera.lookAt(cube.position);

(Dr. Mihail) THREE.js November 2, 2015 11 / 18

Lights

Basics: main.js

1 // add lighting and add to scene

2 var pointLight = new THREE.PointLight (0 xaabbcc);

3 pointLight.position.set(0, 16, 16);

4 scene.add(pointLight);

(Dr. Mihail) THREE.js November 2, 2015 12 / 18

Action

Basics: main.js

1 renderer.render(scene , camera);

2 function render () {

3 renderer.render(scene , camera);

4 requestAnimationFrame(render);

5 cube.rotation.y+=0.01; // animate

6 }

7 render ();

(Dr. Mihail) THREE.js November 2, 2015 13 / 18

Textures

Basics: main.js

1 var cubeMaterial = new THREE.

MeshLambertMaterial ({ map: THREE.ImageUtils.

loadTexture(’crate.jpg’)});

(Dr. Mihail) THREE.js November 2, 2015 14 / 18

Models

3D Models

Asynchronously:

Load the model’s texture maps

Load the model

Add to scene

(Dr. Mihail) THREE.js November 2, 2015 15 / 18

Textures

Basics: main.js

1 var texture = new THREE.Texture ();

2 var loader = new THREE.ImageLoader(manager);

3 loader.load(’UV_Grid_Sm.jpg’, function (image)

{

4 texture.image = image;

5 texture.needsUpdate = true;

6 });

(Dr. Mihail) THREE.js November 2, 2015 16 / 18

Model

Housekeeping

1 var manager = new THREE.LoadingManager ();

2 manager.onProgress = function (item , loaded ,

total) {

3 console.log(item , loaded , total);

4 };

5 var onProgress = function (xhr) {

6 if (xhr.lengthComputable) {

7 var percentComplete = xhr.loaded / xhr.total

* 100;

8 console.log(Math.round(percentComplete , 2) +

’% downloaded ’);

9 }

10 };

11 var onError = function (xhr) { };

(Dr. Mihail) THREE.js November 2, 2015 17 / 18

Model

Loading the model

1 var loader = new THREE.OBJLoader(manager);

2 loader.load(’male02.obj’, function (object) {

3 object.scale.set(0.5, 0.5, 0.5);

4 object.position.y = -50;

5 object.traverse(function (child) {

6 if (child instanceof THREE.Mesh) {

7 child.material.map = texture;

8 }

9 });

10 scene.add(object);

11 }, onProgress , onError);

(Dr. Mihail) THREE.js November 2, 2015 18 / 18

