Interpolation

Dr. Mihail

October 26, 2015

Definitions

(1) Interpolation: method of constructing new data points from sampling or experimentation.

Case study

Spoze we have

\mathbf{x}	$\mathbf{f (x)}$
0	0
1	0.8415
2	0.9093
3	0.1411
4	-0.7568
5	-0.9589
6	-0.2794

Case study

Piecewise constant

Case study

Piecewise linear

Case study

Piecewise linear

Given two data points, say $\left(x_{a}, y_{a}\right)$ and $\left(x_{b}, y_{b}\right)$, the interpolant function is given by:

$$
y=y_{a}+\left(y_{b}-y_{a}\right) \frac{x-x_{a}}{x_{b}-x_{a}}
$$

Case study

Polynomial

$f(x)=$
$-0.0001521 x^{6}-0.003130 x^{5}+0.07321 x^{4}-0.3577 x^{3}+0.2255 x^{2}+0.9038 x$

Other methods

Interpolation Methods

- Piecewise polynomial
- Spline
- Barycentric coordinates for interpolating on a triangle or tetrahedron
- Gaussian process
- And others...

2D functions

Extend concept to multivariate functions

Bilinear interpolation

Problem setting

Suppose you have a function $f(x, y)$. You know the value of that function for a limited number of points (e.g., 4 points). Your goal is to approximate the function at arbitrary points (x, y).

Bilinear interpolation

We first do linear interpolation along the X -axis:

$$
\begin{aligned}
& R_{1}=f\left(x, y_{1}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{11}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{21}\right) \\
& R_{2}=f\left(x, y_{2}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{12}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{22}\right)
\end{aligned}
$$

Bilinear interpolation

We then do linear interpolation along the Y -axis:

$$
\begin{gathered}
f(x, y) \approx \frac{y_{2}-y}{y_{2}-y_{1}} f\left(x, y_{1}\right)+\frac{y-y_{1}}{y_{2}-y_{1}} f\left(x, y_{2}\right) \\
f(x, y) \approx \frac{1}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(f\left(Q_{11}\right)\left(x_{2}-x\right)\left(y_{2}-y\right)+f\left(Q_{21}\right)\left(x-x_{1}\right)\left(y_{2}-y\right)+f\left(Q_{12}\right)\left(x_{2}-x\right)\left(y-y_{1}\right)+f\left(Q_{22}\right)\left(x-x_{1}\right)\left(y-y_{1}\right)\right)
\end{gathered}
$$

