Perspective Projection ${ }^{1}$

Dr. Mihail

September 6, 2016

[^0]
Definitions

- View Space: coordinate system with the viewer looking down the -z axis, with $+x$ to the right and $+y$ up
- World-View Transformation: takes points in world space and converts them into points in view space
- Projection Transformation: takes points in view space and converts them into points in Canonical View Space
- Canonical View Space: coordinate system with the viewer looking along $-z,+x$ to the right and $+y$ up. Here everything inside the cube $\mathrm{x}:[-1,1], \mathrm{y}:[-1,1], \mathrm{z}:[-1,1]$ using orthogonal projection.

Perspective Projection

One Point Perspective

https://www.youtube.com/watch?v=qmSg_F4P5yU

Two Point Perspective

https://www.youtube.com/watch?t=52\&v=7ZYBWA-ifEs

Three Point Perspective

https://www.youtube.com/watch?v=BfHRReALvVc

Simple Perspective Transformation

Simple Perspective Transformation

$$
\begin{aligned}
& \text { By similar triangles } \\
& \frac{X_{s}}{d}=\frac{x_{v}}{z_{v}} \quad \frac{y_{s}}{d}=\frac{y_{v}}{z_{v}}
\end{aligned}
$$

View Plane

Simple Perspective Transformation

Using homogeneous coordinates

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
d
\end{array}\right] \equiv\left[\begin{array}{c}
x_{v} \\
y_{v} \\
z_{v} \\
z_{v} / d
\end{array}\right] \quad \mathbf{P}_{s}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \mathbf{P}_{v}
$$

Simple Perspective Transformation

- One can write a line in parametric form: $x=x_{0}+t d$
- x_{0} is a point on a line, t is a scalar (distance along the line from x_{0}) and d is a direction (unit length)
- Different x_{0} gives different parallel lines

$$
\begin{gathered}
{\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{f} & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0} \\
1
\end{array}\right]+t\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{f} & 0
\end{array}\right]\left[\begin{array}{c}
x_{d} \\
y_{d} \\
z_{d} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{0}+t x_{d}}{z_{0}+t_{d}} \\
\frac{y_{0}+t y_{d}}{z_{0}+t_{d}} \\
1
\end{array}\right]} \\
\text { Taking the limit as } t \rightarrow \infty \text {, we get }\left[\begin{array}{c}
\frac{f x_{d}}{z_{d}} \\
\frac{f y_{d}}{z_{d}} \\
f
\end{array}\right]
\end{gathered}
$$

Simple Perspective Transformation

Problems

- This does not map points to a Canonical View Volume
- Insufficient for all applications (e.g., depth testing, because we throw away information)

Orthographic View Volume

Perspective View Volume

Perspective View Volume

- Near and far planes are parallel to the image plane $z_{v}=n, z_{v}=f$
- Other planes all pass through the center of projection
- Left and right planes intersect the image planes in vertical lines
- The top and bottom planes intersect the image plane in horizontal lines

Perspective View Volume

Perspective View Volume

Perspective View Volume

Can convert from image height to FOV or viceversa.

Perspective View Volume

Symmetry.

Transformation

Transformation

We need a matrix that transforms

Transformation

- Convert the perspective case to orthographic so we can use the canonical view space in the existent pipeline
- The intersection of lines with the near clip plane should not change

General Perspective

$$
M_{p}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{n+f}{n} & -f \\
0 & 0 & \frac{1}{n} & 0
\end{array}\right] \equiv\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & \frac{n+f}{n} & -n f \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- This matrix leaves points with $z=n$ unchanged
- It maps depth properly
- We can multiply a homogeneous matrix by any number without changing the final point, so the two matrices have the same effect

MV.js perspective()

function perspective(fovy, aspect, near, far) \{

```
var f = 1.0 / Math.tan( radians(fovy) / 2 );
var d = far - near;
var result = mat4();
result[0][0] = f / aspect;
result[1][1] = f;
result[2][2] = -(near + far) / d;
result[2][3] = -2 * near * far / d;
result[3][2] = -1;
result[3][3] = 0.0;
return result;
```


MV.js perspective()

$$
\begin{aligned}
& f=\frac{1}{\tan ^{-1}\left(\frac{\text { fowy }}{2}\right)} \\
& d=\text { far }- \text { near }
\end{aligned}
$$

The Matrix

$$
M_{p}=\left[\begin{array}{cccc}
\frac{f}{a} & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & \frac{-n+f}{d} & \frac{2 n f}{d} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

[^0]: ${ }^{1}$ Some of the images in these slides are taken from Dr. Stephen Chenney graphics course at UW
 Madison http://research.cs.wisc.edu/graphics/Courses/559-s2002/

