
Introduction to Big Data and Machine Learning
Dimensionality Reduction

Continuous Latent Variables

Dr. Mihail

October 8, 2019

(Dr. Mihail) Intro Big Data October 8, 2019 1 / 20



Data Dimensionality

Idea

Many datasets have the property that the data points all lie close to a
manifold of much lower dimensionality than that of the original data
space

Consider MNIST digits

They all lie in a 768-dimensional space, but are relatively close
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Data Dimensionality

Idea

Goal: “summarize” the ways in which the 3’s (observed variables)
vary with only a few continuous variables (latent variables)

Nonprobabilistic Principal Component Analysis: express each
observed variable as a projection on a lower dimensional subspace
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Principal Component Analysis

Basics

PCA is a technique widely used in dimensionality reduction, lossy
data compression, feature extraction and data visualization

Also known as the “Karhunen-Loève” transform

There are two formulations of PCA that give rise to the same
algorithm:

1 An orthogonal projection of data onto a lower dimensional linear space,
known as the principal subspace, such that the variance of the
projected data is maximized

2 Linear projection that minimizes the average projection cost, defined as
the mean squared distance between the data points and their
projections
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Maximum variance formulation

PCA derivation

Consider a dataset of observations {xn} where n = 1 . . .N and xn is a
Euclidean variable with dimensionality D

Goal: project the data onto a space with dimensionality M < D while
maximizing the variance of the projected data. We shall assume that
M is given

To start, we can imagine projecting on a space with M = 1.

We define the direction of this 1-dimensional space with a
D−dimensional vector u1, such that u is a unit vector: uTi ui = 1
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Data Dimensionality

PCA derivation

Each data point xn is projected onto a scalar value uT1 xn.

The mean of the projected data is uT1 x̄ , where x̄ is the data set mean
given by:

x̄ =
1

N

N∑
n=1

xn (1)

and the variance of the projected data:

1

N

N∑
n=1

{uT1 xn − uT1 x̄}2 = uT1 Su1 (2)

where S is the covariance given by:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (3)
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Data Dimensionality

PCA derivation

We now maximize the projected variance uT1 Su1 with respect to u1.

Constrained maximization to prevent the naive solution ||u1|| → ∞
The appropriate constraint should be to maintain unity ||uT1 u1|| = 1.
To enforce, we introduce a Lagrange multiplier λ1, and make solve
unconstrained maximization of:

uT1 Su1 + λ1(1− uT1 u1) (4)

and setting the derivative of above to 0 w.r.t. u1, we see that

Su1 = λ1u1 (5)

which says that u1 has to be an eigenvalue of S
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Data Dimensionality

PCA derivation

If we left-multiply by uT1 and make use of uT1 u1 = 1, then the
variance is given by:

uT1 Su1 = λ1 (6)

and so the variance will be at a maximum when we set u1 to the
eigenvector with the largest eigenvalue λ1

This eigenvector is known as the principal component
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Data Dimensionality

Summary

PCA involves computing the mean x̄ and the covariance matrix S of a
dataset, and then finding the M eigenvectors of S corresponding to
the largest eigenvalues

Potential concern: finding the eigenvectors and eigenvalues for a DxD
matrix is O(D3).

If we only need M << D eigenvectors, there are other methods
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Data Dimensionality

Minimum-error formulation of PCA

Let the basis vectors ui be a complete D-dimensional orthonormal set,
where i = 1 . . .D

Because this basis is complete, each data point can be represented as
a linear combination of the basis vectors:

xn =
D∑
i=1

αniui (7)

where the coefficients αni will be different for different data points

Since the basis is orthonormal, this is a simple rotation, so the
original D components {xn1, . . . , xnD} are replaced by an equivalent
set {αn1, . . . , αnD}
Taking the inner product with uj and making use of orthonormality,
we obtain αnj = xTn uj
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Data Dimensionality

Minimum-error formulation of PCA

Therefore we can now write each data point as follows:

xn =
D∑
i=1

(xTn ui )ui (8)

Our goal is to reduce dimensionality, to an M < D, thus each point
can be approximated by:

x̃n =
M∑
i=1

zniui +
D∑

i=M+1

biui?? (9)
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Data Dimensionality

Minimum-error formulation of PCA

x̃n =
M∑
i=1

zniui +
D∑

i=M+1

biui

where {zni} depend on a particular data point, and {bi} are constants
for all data points

We are free to choose {ui}, {zni} and {bi} so as to minimize the
distortion introduced by the reduction in dimensionality:

J =
1

N

N∑
n=1

||xn − x̃n||2 (10)
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Data Dimensionality

Minimum-error formulation of PCA

Consider first {zni}. Substituting for x̃n, setting the derivative wrt
znj to zero we obtain:

znj = xTn uj (11)

Similarly, setting the derivative of J with respect to bi to zero, we
obtain

bj = x̄Tuj (12)

where j = M + 1, . . . ,D. If we substitute zniand bi in Equation ?? we
obtain:

xn − x̃n =
D∑

i=M+1

{(xn − x̄)Tui}ui (13)
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Data Dimensionality

Minimum-error formulation of PCA

We obtain a formulation of J, purely as a function of {ui}:

J =
1

N

N∑
n=1

D∑
i=M+1

(xTn ui − x̄Tui )
2 =

D∑
i=M+1

uTi Sui (14)

The solution to the constrained minimization of J involves solving the
eigenvalue problem:

Sui = λiui (15)

where i=1, . . . ,D and the eigenvectors are orthonormal
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Data Dimensionality

PCA algorithm shown on MNIST

Compute x̄ .
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Data Dimensionality

Code to finding x̄

i m p o r t s c i p y . i o
mat = s c i p y . i o . loadmat ( ’ mni s t . mat ’ )
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t as p l t

X = mat [ ’ t r a i n X ’ ] [ : , : ]
y = mat [ ’ t r a i n Y ’ ] [ : , : ] [ 0 ]

t h r e e s = X [ np . where ( y==3)]
x b a r = np . mean ( t h r e e s , a x i s =0)
p l t . s u b p l o t s ( 1 , 1)
p l t . imshow ( np . r e s h a p e ( xbar , ( 2 8 , 2 8 ) ) )
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Data Dimensionality

PCA algorithm

Subtract the mean from all xn

xzeromean = t h r e e s − x b a r

(Dr. Mihail) Intro Big Data October 8, 2019 17 / 20



Data Dimensionality

Algorithm

Compute the covariance matrix xT x and its eigendecomposition:

# Compute c o v a r i a n c e mat r i x
cov mat = xzeromean .T. dot ( xzeromean ) / ( xzeromean . shape [0]−1)

# Compute e i g e n v a l u e decompos i t i on
e i g e n v a l s , e i g e n v e c s = np . l i n a l g . e i g ( cov mat )

# Arrange as p a i r s ( t u p l e s )
e i g p a i r s = [ ( e i g e n v a l s [ i ] , e i g e n v e c s [ : , i ] ) f o r i i n range ( l e n ( e i g v a l s ) ) ]

# Sor t the ( e i g e n v a l u e , e i g e n v e c t o r ) t u p l e s from h igh to low
e i g p a i r s . s o r t ( key=lambda x : x [ 0 ] , r e v e r s e=True )
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Data Dimensionality

Project to subspace and reconstruct

f i g , ax = p l t . s u b p l o t s (5 , 9 , f i g s i z e = (25 , 15) )
f o r d i g i t i n range ( 5 ) :

on e th r e e = xzeromean [ d i g i t , : ]
ax [ d i g i t , 0 ] . imshow ( np . r e shape ( one th r e e+xbar , (28 , 28 ) ) )
ax [ d i g i t , 0 ] . s e t t i t l e ( ’ O r i g i n a l ’ )
f o r ( b a s i s i x , b a s i s ) i n enumerate ( [ 1 , 2 , 5 , 10 , 100 , 200 , 600 , 28∗28 ] ) :

subspace = np . a r r a y ( [ e i g p a i r s [ i ] [ 1 ] f o r i i n range ( b a s i s ) ] ) . T

X pca = np . dot ( oneth ree , subspace )
X recon = np . dot ( subspace , X pca ) + xbar

ax [ d i g i t , b a s i s i x +1] . imshow ( np . r e shape ( np . abs ( X recon ) , (28 , 28 ) ) )
ax [ d i g i t , b a s i s i x +1] . s e t t i t l e ( s t r ( b a s i s )+ ’ components ’ )
ax [ d i g i t , b a s i s i x +1] . t i c k p a r ams ( l ab e l bo t t om=Fa l s e , l a b e l l e f t=Fa l s e )
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