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Data Dimensionality

@ Many datasets have the property that the data points all lie close to a
manifold of much lower dimensionality than that of the original data
space

o Consider MNIST digits
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@ They all lie in a 768-dimensional space, but are relatively close
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Data Dimensionality

@ Goal: “summarize” the ways in which the 3's (observed variables)
vary with only a few continuous variables (latent variables)

@ Nonprobabilistic Principal Component Analysis: express each
observed variable as a projection on a lower dimensional subspace
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Principal Component Analysis

Basics

@ PCA is a technique widely used in dimensionality reduction, lossy
data compression, feature extraction and data visualization

@ Also known as the “Karhunen-Loéve” transform

@ There are two formulations of PCA that give rise to the same
algorithm:

© An orthogonal projection of data onto a lower dimensional linear space,
known as the principal subspace, such that the variance of the
projected data is maximized

@ Linear projection that minimizes the average projection cost, defined as
the mean squared distance between the data points and their
projections
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Maximum variance formulation

PCA derivation

o Consider a dataset of observations {x,} where n=1... N and x, is a
Euclidean variable with dimensionality D

@ Goal: project the data onto a space with dimensionality M < D while
maximizing the variance of the projected data. We shall assume that
M is given

@ To start, we can imagine projecting on a space with M = 1.

@ We define the direction of this 1-dimensional space with a

D—dimensional vector uy, such that v is a unit vector: u,-Tu,- =1

(Dr. Mihail) Intro Big Data October 8, 2019 5/20



Data Dimensionality

PCA derivation

@ Each data point x, is projected onto a scalar value ulTx,,.

@ The mean of the projected data is ulT where X is the data set mean
given by:

_ 1
X=4 Z Xn (1)
and the variance of the projected data:

N

1

N Z{ulTx,, —uf X}? = uf Sy (2)
n=1

where S is the covariance given by:

NZ Xp — X)(xp — %) T (3)
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Data Dimensionality

PCA derivation

@ We now maximize the projected variance u1T5u1 with respect to u.

o Constrained maximization to prevent the naive solution ||u1|| — oo

@ The appropriate constraint should be to maintain unity ||u] u1|| = 1.
To enforce, we introduce a Lagrange multiplier A1, and make solve
unconstrained maximization of:

uf Sty + M (1 — uf uy) (4)
and setting the derivative of above to 0 w.r.t. uj, we see that

Su1 = /\1 uy (5)

which says that u; has to be an eigenvalue of S
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Data Dimensionality

PCA derivation

o If we left-multiply by u/ and make use of u/ u; =1, then the
variance is given by:

u1T5u1 = )\1 (6)

and so the variance will be at a maximum when we set u; to the
eigenvector with the largest eigenvalue A\;

@ This eigenvector is known as the principal component
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Data Dimensionality

dataset, and then finding the M eigenvectors of S corresponding to
the largest eigenvalues

@ PCA involves computing the mean X and the covariance matrix S of a
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Data Dimensionality

@ PCA involves computing the mean X and the covariance matrix S of a
dataset, and then finding the M eigenvectors of S corresponding to
the largest eigenvalues

@ Potential concern: finding the eigenvectors and eigenvalues for a DxD
matrix is O(D3).

@ If we only need M << D eigenvectors, there are other methods
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Data Dimensionality

Minimum-error formulation of PCA

@ Let the basis vectors u; be a complete D-dimensional orthonormal set,
wherei=1...D

v
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Data Dimensionality

Minimum-error formulation of PCA

@ Let the basis vectors u; be a complete D-dimensional orthonormal set,
wherei=1...D

@ Because this basis is complete, each data point can be represented as
a linear combination of the basis vectors:

D
Xp = Z Qpjuj (7)
i=1

where the coefficients a,; will be different for different data points

@ Since the basis is orthonormal, this is a simple rotation, so the
original D components {xs1,...,x,p} are replaced by an equivalent
set {anl, ... ,a,,D}

@ Taking the inner product with u; and making use of orthonormality,

we obtain a, = x|

v
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Data Dimensionality

Minimum-error formulation of PCA

@ Therefore we can now write each data point as follows:

D

Xp = Z(X,TUI)UI (8)

i=1

@ Our goal is to reduce dimensionality, to an M < D, thus each point
can be approximated by:

Kp = Zz,,,u, + Z bju;?? (9)

i=M+1
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Data Dimensionality

Minimum-error formulation of PCA

o
Zznl up + Z b u;
i=M+1

where {z,;} depend on a particular data point, and {b;} are constants
for all data points

@ We are free to choose {u;}, {z,;} and {b;} so as to minimize the
distortion introduced by the reduction in dimensionality:

1 N
:NZHXn_)?nHz (10)
n=1

v
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Data Dimensionality

Minimum-error formulation of PCA

o Consider first {z,;}. Substituting for X,, setting the derivative wrt
zpjto zero we obtain:

Fo = 5 5 (11)

o Similarly, setting the derivative of J with respect to b; to zero, we

obtain
bj = )_<Tu_,' (12)
where j = M +1,...,D. If we substitute z,;and b; in Equation ?? we
obtain:
D
Xn—%n= > {(xa— %) uibu; (13)
i=M+1
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Data Dimensionality

Minimum-error formulation of PCA

o We obtain a formulation of J, purely as a function of {u;}:

N D D
1 -
J = N E ' g (xTuj —xTu)? = ' E u;” Su; (14)
n=1;=M+1 i=M+1

@ The solution to the constrained minimization of J involves solving the
eigenvalue problem:
SU,‘ = /\,'U,' (15)

where i=1,..., D and the eigenvectors are orthonormal
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Data Dimensionality

PCA algorithm shown on MNIST

o Compute X.
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Data Dimensionality

Code to finding X

import scipy.io

mat = scipy.io.loadmat (' mnist.mat’)
import numpy as np

import matplotlib.pyplot as plt

X = mat[ ' trainX "][:, :]
y = mat[ ' trainY "|[:, :][0]

threes = X[np.where(y==3)]

xbar = np.mean(threes, axis=0)
plt.subplots(1, 1)
plt.imshow(np.reshape(xbar, (28, 28)))

v
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Data Dimensionality

PCA algorithm

@ Subtract the mean from all x,

0
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xzeromean = threes — xbar
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Data Dimensionality

Algorithm

T

@ Compute the covariance matrix x ' x and its eigendecomposition:

# Compute covariance matrix
cov_.mat = xzeromean.T.dot(xzeromean) / (xzeromean.shape[0]—1)

# Compute eigenvalue decomposition
eigen_vals , eigen_vecs = np.linalg.eig(cov_mat)

# Arrange as pairs (tuples)
eig-pairs = [(eigen_vals[i], eigen_vecs[:,i]) for i in range(len(eig-vals))]

# Sort the (eigenvalue, eigenvector) tuples from high to low
eig_pairs.sort(key=lambda x: x[0], reverse=True)
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Data Dimensionality

Project to subspace and reconstruct

fig, ax = plt.subplots(5, 9, figsize = (25, 15))
for digit in range(5):
onethree = xzeromean[digit, :]
ax[digit, 0].imshow(np.reshape(onethreetxbar, (28, 28)))
ax[digit, 0].set_title('Original ")
for (basis_ix, basis) in enumerate([1, 2, 5, 10, 100, 200, 600, 28%28]):
subspace = np.array ([eig_pairs[i][1] for i in range(basis)]).T

X_pca = np.dot( onethree, subspace)
X_recon = np.dot(subspace , X_pca) + xbar

ax[digit, basis_ix+1].imshow(np.reshape(np.abs(X.recon), (28, 28)))
ax[digit, basis_ix+1].set_title(str(basis)+’ components’)
ax[digit, basis_ix+1].tick_-params(labelbottom=False, labelleft=False)
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