Introduction to Big Data and Machine Learning OLS matrix derivation

Dr. Mihail

August 26, 2019

Ordinary least squares

Matrix form

- Let X be $n \times k$, where each row (n of them) is an observation of k variables. We will assume models have a constant (bias), so first column will be 1's
- Let y be an $n \times 1$ vector of observations on the dependent variable
- Let ϵ be an $n \times 1$ vector of disturbances or errors
- Let β be a $k \times 1$ vector of unknown population parameters that we wish to estimate

$$
\left[\begin{array}{c}
Y_{1} \tag{1}\\
Y_{2} \\
\vdots \\
\vdots \\
Y_{n}
\end{array}\right]_{n \times 1}=\left[\begin{array}{ccccc}
1 & X_{11} & X_{21} & \ldots & X_{21} \\
1 & X_{12} & X_{22} & \ldots & X_{k 2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & X_{1 n} & X_{2 n} & \ldots & X_{k n}
\end{array}\right]_{n \times k}\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\vdots \\
\beta_{n}
\end{array}\right]_{k \times 1}+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\vdots \\
\epsilon_{n}
\end{array}\right]_{n \times 1}
$$

Ordinary least squares

Matrix form

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
\vdots \\
Y_{n}
\end{array}\right]_{n \times 1}=\left[\begin{array}{ccccc}
1 & X_{11} & X_{21} & \ldots & X_{21} \\
1 & X_{12} & X_{22} & \ldots & X_{k 2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & X_{1 n} & X_{2 n} & \ldots & X_{k n}
\end{array}\right]_{n \times k}\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\vdots \\
\beta_{n}
\end{array}\right]_{k \times 1}+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\vdots \\
\epsilon_{n}
\end{array}\right]_{n \times 1}
$$

Or more succintly

$$
\begin{equation*}
y=X \beta+\epsilon \tag{2}
\end{equation*}
$$

Ordinary least squares

Matrix form

- We wish to estimate $\hat{\beta}$
- $\hat{\beta}$ minimizes the sum of the squared residuals $\sum e_{i}^{2}$
- The vector of residuals is given by $e=y-X \hat{\beta}$
- The sum of squared residuals is given by $e^{\prime} e^{a}$
${ }^{a}$ Not to be confused with $e e^{\prime}$, the covariance of residuals

Sum of squared residuals

$$
\left.\begin{array}{lllll}
e_{1} & e_{2} & \ldots & \ldots & e_{n}
\end{array}\right]_{1 \times n}\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
\vdots \\
e_{n}
\end{array}\right]_{\text {Intro Big Data }}=\left[\begin{array}{llllll}
e_{1} \times e_{1} & e_{2} \times e_{2} & \ldots & e_{n} \times e_{n}
\end{array}\right] \quad \text { (3) }
$$

Ordinary least squares

Sum of squares

$$
\begin{align*}
e^{\prime} e & =(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) \\
& =y^{\prime} y-\hat{\beta}^{\prime} y-y^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} \tag{4}\\
& =y^{\prime} y-2 \hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}
\end{align*}
$$

We used this identity: $y^{\prime} X \hat{\beta}=\left(y^{\prime} X \hat{\beta}\right)^{\prime}=\hat{\beta}^{\prime} X^{\prime} y$

Ordinary least squares

Matrix differentiation review

$$
\begin{equation*}
\frac{\partial a^{\prime} b}{\partial b}=\frac{\partial b^{\prime} a}{\partial b}=a \tag{5}
\end{equation*}
$$

where a and b are $K x 1$ vectors

$$
\begin{equation*}
\frac{\partial b^{\prime} A b}{\partial b}=2 A b=2 b^{\prime} A \tag{6}
\end{equation*}
$$

where A is any symmetric matrix. Note that you can write the derivative as $2 A b$ or $2 b^{\prime} a$

Ordinary least squares

Matrix differentiation review

$$
\begin{equation*}
\frac{\partial 2 \beta^{\prime} X^{\prime} y}{\partial b}=\frac{\partial 2 \beta^{\prime}\left(X^{\prime} y\right)}{\partial b}=2 X^{\prime} y \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial 2 \beta^{\prime} X^{\prime} X \beta}{\partial b}=\frac{\partial 2 \beta^{\prime} A \beta}{\partial b}=2 A \beta=2 X^{\prime} X \beta \tag{8}
\end{equation*}
$$

when $X^{\prime} X$ is a $K x K$ matrix.

Ordinary least squares

Parameter estimation

The $\hat{\beta}$ that minimizes the sum of squared residuals is obtained by computing the derivative of $e^{\prime} e$ with respect to $\hat{\beta}$

$$
\begin{equation*}
\frac{\partial e^{\prime} e}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta} \tag{9}
\end{equation*}
$$

Setting the derivative equal to 0 and solving for $\hat{\beta}$

$$
\begin{gather*}
-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0 \tag{10}\\
\left(X^{\prime} X\right) \hat{\beta}=X^{\prime} y \tag{11}
\end{gather*}
$$

$X^{\prime} X$ is always square ($k \times k$) and symmetric. Both X and y are known from our data

Ordinary least squares

Parameter estimation

$$
\begin{equation*}
\left(X^{\prime} X\right) \hat{\beta}=X^{\prime} y \tag{12}
\end{equation*}
$$

$X^{\prime} X$ is always square $(k \times k)$ and symmetric.
Both X and y are known from our data, so we can multiply both sides by the inverse $\left(X^{\prime} X\right)^{-1}$, yielding:

$$
\begin{gather*}
\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{13}\\
I \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{14}
\end{gather*}
$$

or finally:

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{15}
\end{equation*}
$$

