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Ordinary least squares

Matrix form

Let X be n x k , where each row (n of them) is an observation of k
variables. We will assume models have a constant (bias), so first
column will be 1’s

Let y be an n x 1 vector of observations on the dependent variable

Let ε be an n x 1 vector of disturbances or errors

Let β be a k x 1 vector of unknown population parameters that we
wish to estimate
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Matrix form
Y1

Y2
...
...
Yn


nx1

=


1 X11 X21 . . . X21

1 X12 X22 . . . Xk2
...

...
... . . .

...
...

...
... . . .

...
1 X1n X2n . . . Xkn


nxk


β1
β2
...
...
βn


kx1

+


ε1
ε2
...
...
εn


nx1

Or more succintly

y = Xβ + ε (2)
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Ordinary least squares

Matrix form

We wish to estimate β̂

β̂ minimizes the sum of the squared residuals
∑

e2i

The vector of residuals is given by e = y − X β̂

The sum of squared residuals is given by e ′ea

aNot to be confused with ee′, the covariance of residuals

Sum of squared residuals
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Ordinary least squares

Sum of squares

e ′e = (y − X β̂)′(y − X β̂)

= y ′y − β̂′y − y ′X β̂ + β̂′X ′X β̂

= y ′y − 2β̂′X ′y + β̂′X ′X β̂

(4)

We used this identity: y ′X β̂ = (y ′X β̂)′ = β̂′X ′y
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Ordinary least squares

Matrix differentiation review

∂a′b

∂b
=
∂b′a

∂b
= a (5)

where a and b are Kx1 vectors

∂b′Ab

∂b
= 2Ab = 2b′A (6)

where A is any symmetric matrix. Note that you can write the derivative
as 2Ab or 2b′a
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Ordinary least squares

Matrix differentiation review

∂2β′X ′y

∂b
=
∂2β′(X ′y)

∂b
= 2X ′y (7)

and
∂2β′X ′Xβ

∂b
=
∂2β′Aβ

∂b
= 2Aβ = 2X ′Xβ (8)

when X ′X is a KxK matrix.
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Ordinary least squares

Parameter estimation

The β̂ that minimizes the sum of squared residuals is obtained by
computing the derivative of e ′e with respect to β̂

∂e ′e

∂β̂
= −2X ′y + 2X ′X β̂ (9)

Setting the derivative equal to 0 and solving for β̂

−2X ′y + 2X ′X β̂ = 0 (10)

(X ′X )β̂ = X ′y (11)

X ′X is always square (k x k) and symmetric.
Both X and y are known from our data
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Ordinary least squares

Parameter estimation

(X ′X )β̂ = X ′y (12)

X ′X is always square (k x k) and symmetric.
Both X and y are known from our data, so we can multiply both sides by

the inverse (X ′X )−1, yielding:

(X ′X )−1(X ′X )β̂ = (X ′X )−1X ′y (13)

I β̂ = (X ′X )−1X ′y (14)

or finally:
β̂ = (X ′X )−1X ′y (15)
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