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Nonparametric

Idea

So far we focused on models (probabilistic or deterministic) that are
governed by a small number of parameters. That is called a
parametric approach.

An important limitation of this approach is that the density model
might a poor approximation of a distribution that generates the data

For example: if the process that generates the data is multimodal, a
Gaussian will never capture this aspect, since Gaussians are
necessarily unimodal
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Histogram approach

To illustrate

Density estimation using histograms

Standard histograms partition x into distinct bins of ∆i and then
count the number ni of observations of x falling in bin i

In order to turn this into a probability density (sum to 1) we simply
divide by N and by the width of ∆i of the bins to obtain the
probability values for each bin given by:

pi =
ni

N∆i
(1)
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Illustration
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Histrogram approach

Benefit of histogram: once histogram has been computed, data can
be discarded, useful when dataset is large

Easy to update if data comes sequentially

Lessons

To estimate the probability density at a particular location , we should
consider the data points that lie within some local neighborhood of
that points

Note: concept of locality involves a distance metric

The value of the smoothing parameter should neither be too large or
too small
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Kernel density estimators

Suppose observations are being drawn from an unknown density p(x)
in some D−dimensional space, which we will assume to be Euclidean,
and we wish to estimate p(x)

Let us consider some small region R containing x . The probability
mass associated with that region is

P =

∫
R
p(x)dx (2)

Now suppose we have collected a dataset containing N observations
drawn from p(x). Each point has a probability P of falling within R,
the total number K of points that lie inside R will be distributed
according to a binomial distribution:

Bin(K |N,P) =
N!

K !(N − K )!
PK (1− P)1−K (3)
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Statistics

Using some insights from statistics we can see that the fraction of
points falling inside the region is P from E[K/N] = P, and similarly
the variance around the mean is var [K/N] = P(1− P)/N

For a large N, this distribution will sharply peak around the mean so

K ' NP (4)

If we also assume the region R is sufficiently small that the probability
density p(x) is roughly constant in that region, then we have

P ' p(x)V (5)

where V is the volume of R. Combining the above, we have:

p(x) =
K

NV
(6)
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The rise of two ideas

The validity of Equation 6 depends on two contradictory assumptions,
namely the region R is sufficiently small that the density is
approximately constant over the region and yet sufficiently large (in
relation to the value of that density) that the number K points falling
inside the region is sufficiently for the binomial to be sharply peaked

Exploiting the result

We can either fix K and determine the value V from the data, which
gives rise to the K -nearest-neighbor technique or

We can fix V and determine K from the data, giving rise to the
kernel approach
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Nearest neighbor

Fixing K

We fix K and determine the value of V from the data

To do this, we consider a small sphere centered on the point x at
which we wish to estimate the density p(x), and allow the radius of
the sphere to grow until it contains exactly K data points.

The estimate of the density p(x) is then given by Equation 6, with V
set to the volume of the resulting sphere.

This technique is known as K -nearest-neighbor
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K-nearest-neighbor
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Classification with KNN

K-nearest-neighbor technique can be used for classification using
Bayes’ theorem.

To do this, we apply KNN separately to each class, then make use of
Bayes’ theorem.
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KNN classification

Suppose we have a dataset of Nk points in class Ck with N points in
total, so that

∑
k Nk = N.

If we wish to classify a new point x we draw a sphere centered on x
containing precisely K points irrespective of their class. Suppose this
sphere has a volume V and contains Kk points from class Ck
Then, using Equation 6, estimate a density associated with each class:

p(x |Ck) =
Kk

NkV
(7)
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KNN classification

Similarly, the unconditional density is given by:

p(x) =
K

NV
(8)

while the class priors are given by

p(Ck) =
Nk

N
(9)

and by using Bayes’ theorem, we can get the posterior:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
=

Kk

K
(10)
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KNN Example
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Memory based methods

Extending parametric models

Linear parametric models seen so far estimate a few parameters from
the training set and discard the training data for predictions

We can combine the two approaches by casting parametric model into
an equivalent “dual representation” where the predictions are also
based on linear combinations of a “kernel” function evaluated at
training data points

For models which are based on a fixed nonlinear feature space
mapping φ(x), the kernel is given by the relation

k(x , x ′) = φ(x)Tφ(x ′) (11)

The kernel is a symmetric function of its arguments so that
k(x , x ′) = k(x ′, x)
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Dual representations

The simplest example of a kernel function is obtained by considering
the identity: φ(x) = x so that k(x , x ′) = xT x ′. We will refer to this
as the linear kernel.

The concept of a kernel formulated as an inner product in a feature
space allows us to build interesting extensions of well-known
algorithms by making use of the “kernel trick” or “kernel substitution”

The general idea is that if some algorithm is formulated in such a way
that input vector x enters only in the form of a scalar products, we
can replace that scalar product with some other choice of kernels
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Kernel examples

Many kernels have the property of being only a function of the
difference between arguments, so that k(x , x ′) = k(x − x ′), known as
stationary because are invariant to translations in feature space

Homogeneous kernels (also known as radial basis functions) depend
only on the distance (typically Euclidean), such that
k(x , x ′) = k(||x − x ′||)
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Dual representations

Consider a linear regression model, whose parameters are determined
by minimizing a regularized sum-of-squares error function given by

J(w) =
1

2

N∑
n=1

{wTφ(xn)− tn}2 +
λ

2
(12)

where λ ≥ 0. Setting the gradient of J(w) to zero with respect to w
we obtain:

w = − 1

λ

N∑
n=1

{wTφ(xn)− tn)φ(xn) =
N∑

n=1

anφ(xn) = ΦTa (13)

where Φ is the design matrix whose nth row is given by φ(xn)T .
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Dual representations

The vector a = (a1, . . . , aN)T :

an = − 1

λ
{wTφ(xn)− tn} (14)

Instead of working with parameter vector w , we can now reformulate
the least squares algorithm in terms of the parameter vector a giving
rise to a dual representation. If we substitute w = ΦTa into J(w) we
obtain:

J(a) =
1

2
aTΦΦTΦΦTa− aTΦΦT t +

1

2
tT t +

λ

2
aTΦΦTa (15)

where t = (t1, . . . , tN)T . We can now define the Gram matrix
K = ΦΦT which is NxN symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn, xm) (16)
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Dual representation

In terms of the Gram matrix, the sum-of-squares error function can be
written as:

J(a) =
1

2
aTKKa− aTKt +

1

2
tT t +

λ

2
aTKa (17)

setting the gradient of J(a) with respect to a to zero, we get:

a = (K + λIN)−1t (18)

and substituting this back into a linear regression model, we obtain
the following prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1t (19)
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