Introduction to Big Data and Machine Learning Nonparametric methods

Dr. Mihail

October 1, 2019

Nonparametric

Idea

- So far we focused on models (probabilistic or deterministic) that are governed by a small number of parameters. That is called a parametric approach.
- An important limitation of this approach is that the density model might a poor approximation of a distribution that generates the data
- For example: if the process that generates the data is multimodal, a Gaussian will never capture this aspect, since Gaussians are necessarily unimodal

Histogram approach

To illustrate

- Density estimation using histograms
- Standard histograms partition x into distinct bins of Δ_{i} and then count the number n_{i} of observations of x falling in bin i
- In order to turn this into a probability density (sum to 1) we simply divide by N and by the width of Δ_{i} of the bins to obtain the probability values for each bin given by:

$$
\begin{equation*}
p_{i}=\frac{n_{i}}{N \Delta_{i}} \tag{1}
\end{equation*}
$$

Illustration

An illustration of the histogram approach to density estimation, in which a data set of 50 data points is generated from the distribution shown by the green curve. Histogram density estimates, based on (2.241), with a common bin width Δ are shown for various values of Δ.

Histrogram approach

- Benefit of histogram: once histogram has been computed, data can be discarded, useful when dataset is large
- Easy to update if data comes sequentially

Lessons

- To estimate the probability density at a particular location, we should consider the data points that lie within some local neighborhood of that points
- Note: concept of locality involves a distance metric
- The value of the smoothing parameter should neither be too large or too small

Kernel density estimators

- Suppose observations are being drawn from an unknown density $p(x)$ in some D-dimensional space, which we will assume to be Euclidean, and we wish to estimate $p(x)$
- Let us consider some small region \mathcal{R} containing x. The probability mass associated with that region is

$$
\begin{equation*}
P=\int_{\mathcal{R}} p(x) d x \tag{2}
\end{equation*}
$$

- Now suppose we have collected a dataset containing N observations drawn from $p(x)$. Each point has a probability P of falling within \mathcal{R}, the total number K of points that lie inside \mathcal{R} will be distributed according to a binomial distribution:

$$
\begin{equation*}
\operatorname{Bin}(K \mid N, P)=\frac{N!}{K!(N-K)!} P^{K}(1-P)^{1-K} \tag{3}
\end{equation*}
$$

Statistics

- Using some insights from statistics we can see that the fraction of points falling inside the region is P from $\mathbb{E}[K / N]=P$, and similarly the variance around the mean is $\operatorname{var}[K / N]=P(1-P) / N$
- For a large N , this distribution will sharply peak around the mean so

$$
\begin{equation*}
K \simeq N P \tag{4}
\end{equation*}
$$

- If we also assume the region \mathcal{R} is sufficiently small that the probability density $p(x)$ is roughly constant in that region, then we have

$$
\begin{equation*}
P \simeq p(x) V \tag{5}
\end{equation*}
$$

where V is the volume of \mathcal{R}. Combining the above, we have:

$$
\begin{equation*}
p(x)=\frac{K}{N V} \tag{6}
\end{equation*}
$$

The rise of two ideas

- The validity of Equation 6 depends on two contradictory assumptions, namely the region \mathcal{R} is sufficiently small that the density is approximately constant over the region and yet sufficiently large (in relation to the value of that density) that the number K points falling inside the region is sufficiently for the binomial to be sharply peaked

Exploiting the result

- We can either fix K and determine the value V from the data, which gives rise to the K-nearest-neighbor technique or
- We can fix V and determine K from the data, giving rise to the kernel approach

Nearest neighbor

Fixing K

- We fix K and determine the value of V from the data
- To do this, we consider a small sphere centered on the point x at which we wish to estimate the density $p(x)$, and allow the radius of the sphere to grow until it contains exactly K data points.
- The estimate of the density $p(x)$ is then given by Equation 6 , with V set to the volume of the resulting sphere.
- This technique is known as K-nearest-neighbor

K-nearest-neighbor

Illustration of K-nearest-neighbour density estimation using the same data set as in Figures 2.25 and 2.24. We see that the parameter K governs the degree of smoothing, so that a small value of K leads to a very noisy density model (top panel), whereas a large value (bottom panel) smoothes out the bimodal nature of the true distribution (shown by the green curve) from which the data set was

 generated.

Classification with KNN

- K-nearest-neighbor technique can be used for classification using Bayes' theorem.
- To do this, we apply KNN separately to each class, then make use of Bayes' theorem.

KNN classification

- Suppose we have a dataset of N_{k} points in class \mathcal{C}_{k} with N points in total, so that $\sum_{k} N_{k}=N$.
- If we wish to classify a new point x we draw a sphere centered on x containing precisely K points irrespective of their class. Suppose this sphere has a volume V and contains K_{k} points from class \mathcal{C}_{k}
- Then, using Equation 6 , estimate a density associated with each class:

$$
\begin{equation*}
p\left(x \mid \mathcal{C}_{k}\right)=\frac{K_{k}}{N_{k} V} \tag{7}
\end{equation*}
$$

KNN classification

- Similarly, the unconditional density is given by:

$$
\begin{equation*}
p(x)=\frac{K}{N V} \tag{8}
\end{equation*}
$$

while the class priors are given by

$$
\begin{equation*}
p\left(\mathcal{C}_{k}\right)=\frac{N_{k}}{N} \tag{9}
\end{equation*}
$$

and by using Bayes' theorem, we can get the posterior:

$$
\begin{equation*}
p\left(\mathcal{C}_{k} \mid x\right)=\frac{p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)}{p(x)}=\frac{K_{k}}{K} \tag{10}
\end{equation*}
$$

KNN Example

Memory based methods

Extending parametric models

- Linear parametric models seen so far estimate a few parameters from the training set and discard the training data for predictions
- We can combine the two approaches by casting parametric model into an equivalent "dual representation" where the predictions are also based on linear combinations of a "kernel" function evaluated at training data points
- For models which are based on a fixed nonlinear feature space mapping $\phi(x)$, the kernel is given by the relation

$$
\begin{equation*}
k\left(x, x^{\prime}\right)=\phi(x)^{T} \phi\left(x^{\prime}\right) \tag{11}
\end{equation*}
$$

- The kernel is a symmetric function of its arguments so that $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$

Dual representations

- The simplest example of a kernel function is obtained by considering the identity: $\phi(x)=x$ so that $k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$. We will refer to this as the linear kernel.
- The concept of a kernel formulated as an inner product in a feature space allows us to build interesting extensions of well-known algorithms by making use of the "kernel trick" or "kernel substitution"
- The general idea is that if some algorithm is formulated in such a way that input vector x enters only in the form of a scalar products, we can replace that scalar product with some other choice of kernels

Kernel examples

- Many kernels have the property of being only a function of the difference between arguments, so that $k\left(x, x^{\prime}\right)=k\left(x-x^{\prime}\right)$, known as stationary because are invariant to translations in feature space
- Homogeneous kernels (also known as radial basis functions) depend only on the distance (typically Euclidean), such that $k\left(x, x^{\prime}\right)=k\left(\left\|x-x^{\prime}\right\|\right)$

Dual representations

- Consider a linear regression model, whose parameters are determined by minimizing a regularized sum-of-squares error function given by

$$
\begin{equation*}
J(w)=\frac{1}{2} \sum_{n=1}^{N}\left\{w^{T} \phi\left(x_{n}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2} \tag{12}
\end{equation*}
$$

where $\lambda \geq 0$. Setting the gradient of $J(w)$ to zero with respect to w we obtain:

$$
\begin{equation*}
w=-\frac{1}{\lambda} \sum_{n=1}^{N}\left\{w^{T} \phi\left(x_{n}\right)-t_{n}\right) \phi\left(x_{n}\right)=\sum_{n=1}^{N} a_{n} \phi\left(x_{n}\right)=\phi^{T} a \tag{13}
\end{equation*}
$$

where Φ is the design matrix whose $n^{t h}$ row is given by $\phi\left(x_{n}\right)^{T}$.

Dual representations

- The vector $a=\left(a_{1}, \ldots, a_{N}\right)^{T}$:

$$
\begin{equation*}
a_{n}=-\frac{1}{\lambda}\left\{w^{T} \phi\left(x_{n}\right)-t_{n}\right\} \tag{14}
\end{equation*}
$$

- Instead of working with parameter vector w, we can now reformulate the least squares algorithm in terms of the parameter vector a giving rise to a dual representation. If we substitute $w=\Phi^{T} a$ into $J(w)$ we obtain:

$$
\begin{equation*}
J(a)=\frac{1}{2} a^{T} \Phi \Phi^{T} \phi \Phi^{T} a-a^{T} \phi \Phi^{T} t+\frac{1}{2} t^{T} t+\frac{\lambda}{2} a^{T} \phi \Phi^{T} a \tag{15}
\end{equation*}
$$

where $t=\left(t_{1}, \ldots, t_{N}\right)^{T}$. We can now define the Gram matrix $K=\Phi \Phi^{T}$ which is $N x N$ symmetric matrix with elements

$$
\begin{equation*}
K_{n m}=\phi\left(x_{n}\right)^{T} \phi\left(x_{m}\right)=k\left(x_{n}, x_{m}\right) \tag{16}
\end{equation*}
$$

Dual representation

- In terms of the Gram matrix, the sum-of-squares error function can be written as:

$$
\begin{equation*}
J(a)=\frac{1}{2} a^{T} K K a-a^{T} K t+\frac{1}{2} t^{T} t+\frac{\lambda}{2} a^{T} K a \tag{17}
\end{equation*}
$$

setting the gradient of $J(a)$ with respect to a to zero, we get:

$$
\begin{equation*}
a=\left(K+\lambda I_{N}\right)^{-1} t \tag{18}
\end{equation*}
$$

and substituting this back into a linear regression model, we obtain the following prediction for a new input x

$$
\begin{equation*}
y(x)=w^{T} \phi(x)=a^{T} \Phi \phi(x)=k(x)^{T}\left(K+\lambda I_{N}\right)^{-1} t \tag{19}
\end{equation*}
$$

