Introduction to Big Data and Machine Learning Mixture Models

Dr. Mihail

October 22, 2019

Mixture Models

Idea

- Data can be made of complicated distributions that are formed from simpler compoenents.

Mixture Models

In this lecture

- Consider the problem of finding clusters in a set of data points
- Non-probabilistic method, hard assignment
- Assumption is that the number of clusters is known
- K-Means algorithm
- A version of expectation maximization (EM) algorithm

Mixture Models

Problem Definition

- Consider the problem of identifying groups, or clusters, of data points in a multidimensional space
- Suppose the data set consists of $\left\{x_{1}, \ldots, x_{N}\right\}$, consisting of N D-dimensional observations
- Our goal is to partition the data into a set of K, where we will assume the number K is given (there are, however, ways to estimate it)

Mixture Models

Intuition

- A cluster, or group, is a set of data points where the inter-point distances within the group are small compared to the distances with points outside the cluster
- We formalize this by introducing a set of D-dimensional vectors μ_{k}, where $k=1 \ldots k$, where μ_{k} is a prototype associated with the $k^{t h}$ cluster.
- μ_{k} can be thought of as the cluster centers

Goal

- Find cluster centers μ_{k} as well as an assignment of the data points to clusters, such that the sum of squares of the distances of each data point to its closest vector μ_{k} is a minimum.

Mixture Models

Notation

- For each data point x_{n}, we introduce a corresponding set of binary indicator variables $r_{n k} \in\{0,1\}$, where $k=1, \ldots, K$ describing which of the K clusters the data point x_{n} is assigned to, so that if data point x_{n} is assigned to cluster k then $r_{n k}=1$, and $r_{n j}=0$ for $j \neq k$
- This is known as 1 -of- K coding scheme

Mixture Models

Notation

- For each data point x_{n}, we introduce a corresponding set of binary indicator variables $r_{n k} \in\{0,1\}$, where $k=1, \ldots, K$ describing which of the K clusters the data point x_{n} is assigned to, so that if data point x_{n} is assigned to cluster k then $r_{n k}=1$, and $r_{n j}=0$ for $j \neq k$
- This is known as 1 -of- K coding scheme

Optimization problem

- We can then define an objective function:

$$
\begin{equation*}
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2} \tag{1}
\end{equation*}
$$

Mixture Models

Solving the optimization problem

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2}
$$

- Goal is to find values for $\left\{r_{n k}\right\}$ and the $\left\{\mu_{k}\right\}$ so as to minimize J

Mixture Models

Solving the optimization problem

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|^{2}
$$

- Goal is to find values for $\left\{r_{n k}\right\}$ and the $\left\{\mu_{k}\right\}$ so as to minimize J

Algorithm

First, choose initial values μ_{k}. Then, iterate two steps (EM):
(1) Minimize J with respect to $r_{n k}$, keeping μ_{k} fixed (Expectation)
(2) Minimize J with respect to μ_{k}, keeping $r_{n k}$ fixed (Maximization)

Mixture Models

First step

- Consider determination of $r_{n k}$
- Since J is a linear function of $r_{n k}$, it has a closed-form solution
- We have n independent terms, each can be found in linear time, choose $r_{n k}=1$ for whichever value of k gives the minimum value of $\left\|x_{n}-\mu_{k}\right\|^{2}$
- More formally:

$$
r_{n k}= \begin{cases}1 & \text { if } k=\operatorname{argmin}_{j}\left\|x_{n}-\mu_{j}\right\|^{2} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Mixture Models

Second step

- No consider optimizing μ_{k}, with $r_{n k}$ fixed
- J is a quadratic function of μ_{k}, and it can be minimized by setting its derivative with respect to μ_{k} to zero, giving

$$
\begin{equation*}
2 \sum_{n=1}^{N} r_{n k}\left(x_{n}-\mu_{k}\right)=0 \tag{3}
\end{equation*}
$$

solving for μ_{k} gives:

$$
\begin{equation*}
\mu_{k}=\frac{\sum_{n} r_{n k} x_{n}}{\sum_{n} r_{n k}} \tag{4}
\end{equation*}
$$

Mixture Models

EM algorithm

- The steps above are repeated until no change in assignment is seen, or after a fixed number of iterations

