Introduction to Machine Learning

CS4731 Dr. Mihail Fall 2017 Slide content based on lecture by Dr. Yaser Abu-Mostafa of Caltech. http://work.caltech.edu/telecourse.html

September 5, 2019

Learning is used when:

- We know a pattern exists
- We don't know the mathematical expression that generated the pattern
- We have finite data

- Unknown function y = f(x)
- Data set $\{(x_1, y_1), (x_2, y_2), ... (x_N, y_N)\}$
- Learning algorithm picks a $g \approx f$ from a hypothesis set $\mathcal H$

• Learn an unknown function?

- Unknown function y = f(x)
- Data set $\{(x_1, y_1), (x_2, y_2), ...(x_N, y_N)\}$
- Learning algorithm picks a $g \approx f$ from a hypothesis set $\mathcal H$
- Learn an unknown function?
- Impossible. Why?

- Unknown function y = f(x)
- Data set $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
- Learning algorithm picks a $g \approx f$ from a hypothesis set \mathcal{H}
- Learn an unknown function?
- Impossible. Why?
- The function can take on any value outside of the data we have.

- Unknown function y = f(x)
- Data set $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
- Learning algorithm picks a $g \approx f$ from a hypothesis set \mathcal{H}
- Learn an unknown function?
- Impossible. Why?
- The function can take on any value outside of the data we have.

What if no pattern exists?

- Learning algorithm will still work, but won't learn anything.
- The algorithm should tell us if/when that is the case.

• There exists a probability μ for picking a red marble: $P(redmarble) = \mu$

- There exists a probability μ for picking a red marble: $P(redmarble) = \mu$
- What is *P*(*bluemarble*)

- There exists a probability μ for picking a red marble: $P(redmarble) = \mu$
- What is $P(bluemarble) = 1 \mu$

- The value μ is unknown, and we pick ${\it N}$ marbles independently with replacement
- The fraction of red marbles is ν

- The value μ is unknown, and we pick ${\it N}$ marbles independently with replacement
- The fraction of red marbles is ν

Does ν say anything about mu?

- The value μ is unknown, and we pick ${\it N}$ marbles independently with replacement
- The fraction of red marbles is u

Does ν say anything about mu?

No!

- The value μ is unknown, and we pick ${\it N}$ marbles independently with replacement
- The fraction of red marbles is u

Does ν say anything about *mu*?

- No!All samples can be blue.
- Yes!

- The value μ is unknown, and we pick ${\it N}$ marbles independently with replacement
- The fraction of red marbles is ν

Does ν say anything about mu?

- No!All samples can be blue.
- Yes!Possible vs. probable! Intuition: more samples give you more certainty.

$$|\mu - \nu| < \epsilon$$

(1)

$$|\mu - \nu| < \epsilon$$

Bad situation

 $P(badevent) \leq$

(1)

$$|\mu -
u| < \epsilon$$

(2)

$$|\mu - \nu| < \epsilon$$

Bad situation

$$P(|
u - \mu| > \epsilon) \le \mathsf{small} \ \mathsf{number}$$

(2)

Hoeffding's Inequality

$$P(|
u - \mu| > \epsilon) \le 2e^{-2e^2N}$$

Hoeffding's Inequality

$$P(|\nu - \mu| > \epsilon) \le 2e^{-2e^2N}$$

Plain English

The statement that $\nu = \mu$ is probably almost correct.

- Valid for all N and ϵ
- Bound does not depend on μ
- Smaller ϵ , the bigger N we need to be sure ν is close μ

It does not apply to multiple hypotheses!

Consider a fair coin. Toss 10 times. What is the probability of getting 10 heads? What is the probability of one person getting 10 heads if 1000 people do it?

- Consider multiple hypotheses, $h_1, h_2, ..., h_M$. ν and μ depend on h.
 - h_1 : $\nu = 0.2$
 - h_2 : $\nu = 0.4$
 - $h_m: \nu = 0.1$
- ν is "in sample", called $E_{in}(h)$
- μ is "out of sample", called $E_{out}(h)$

Hoeffding Inequality

Single Hypothesis

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2e^{-2e^2N}$$

Hoeffding Inequality

Single Hypothesis

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2e^{-2e^2N}$$

Picking a final hypothesis g

Worst case:
$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le$$

$$P(|E_{in}(h_1) - E_{out}(h_1)| > \epsilon$$

or $|E_{in}(h_2) - E_{out}(h_2)| > \epsilon$
or $|E_{in}(h_3) - E_{out}(h_3)| > \epsilon$

or
$$|E_{in}(h_M) - E_{out}(h_M)| > \epsilon$$
)
 $\leq \sum_{m=1}^{M} P(|E_{in}(h_m) - E_{out}(h_M)| > \epsilon)$

Hoeffding Inequality

Single Hypothesis

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2e^{-2e^2N}$$

Picking a final hypothesis g

$$egin{array}{lll} {
m Worst \ case:} & P(|{
m {\it E}_{\it in}}(g)-{
m {\it E}_{\it out}}(g)|>\epsilon) \leq & \end{array}$$

$$P(|E_{in}(h_1) - E_{out}(h_1)| > \epsilon$$

or $|E_{in}(h_2) - E_{out}(h_2)| > \epsilon$
or $|E_{in}(h_3) - E_{out}(h_3)| > \epsilon$

or
$$|E_{in}(h_M) - E_{out}(h_M)| > \epsilon$$
)
 $\leq \sum_{m=1}^{M} P(|E_{in}(h_m) - E_{out}(h_M)| > \epsilon)$

Finally

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le \sum_{m=1}^{M} 2e^{-2e^2N} = 2Me^{-2e^2N}$$

$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le \sum_{m=1}^{M} 2e^{-2e^2N} = 2Me^{-2e^2N}$

Model Complexity

- Sophisticated models mean high *M*, the more sophisticated the model, the more likely you will learn sample space and not generalize.
- The difficulty in choosing the right method is based on the above intuition.

(Dr. Mihail)

Ĵ.

(Dr. Mihail)

Ĵ.