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Probability review

@ Sample space €2: set of all possible outcomes for an experiment

@ Event space A: space of potential results of the experiment. A subset
A of Q is in the event space A if at the end of the experiment, we
can observe whether a particular event w € Q

@ Probability of P: With each event A € A, we associate a number
P(A) that measures the probability or degree of belief that the event
will occur. P(A) is called the probability of A.

@ The probability of a single event must be in the interval [0, 1], and
the total probability over all outcomes in Q must be 1, i.e.: P(Q) =1
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Conditional Probabilities

Consider data D and model parameters w
P(w, D) = P(w|D)P(D) (1)
P(D,w) = P(D|w)P(w) (2)
therefore
P(w|D)P(D) = P(D|w)P(w) (3)
hence
p(w|D) = ZPLI2) @)
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Bayesian linear regression

_ P(Dlw)P(w)

P(wID) = =53 (5)

@ P(w|D) is referred to as the posterior
e P(w) prior probability, our prior belief about the model parameters
o P(D|w) is the likelihood function

also,

P(D) = /P(D|W)P(W)dw (6)

v
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Bayesian linear regression

Bayesian v. Frequentist

@ Frequentist setting: w is considered fixed, obtained by an
“estimator”, whose error bars are obtained by considering the
distribution of data sets D

@ Bayesian approach: there is a single dataset D, the one observed, and
the uncertainty in parameters is expressed through a probability
distribution over w )

A widely used approach in frequentist approach is to estimate the
maximum likelihood, in which w is computed that maximizes the
likelihood function P(D|w)
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Linear basis function models

Linear regression models share the property of being linear in their
parameters but not necessarily in their input variables. Using non-linear
basis functions of input variables, linear models are able model arbitrary
non-linearities from input variables to targets. A linear regression model
y(x,w) can therefore be defined more generally as:

M—-1 M—-1
yoow) =wo+ Y wigi(x) = Y wisi(x) = w' ¢(x) (7)
=1 j=0

where ¢; are the basis functions and M is the total number of parameters
w; including the bias term wy.

o go(x) =1

and in the case of simple linear regression ¢(x) = x
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Bayesian linear regression

@ The target variable t of an observation x is given by a deterministic
function y(x, w)
t=y(xw)+e (8)

where € is additive noise, normally distributed (i.e., follows a Gaussian
distribution with zero mean and precision[inverse variance| 3)
The probabilistic model of t given x can be written as:

Pl w,8) = Ml ), 671) = 1] Leexpl= ey i) O

v
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Bayesian linear regression

Likelihood function

To fit a model, we use N independent and identically distributed
observations xi, x2, ..., xy and their corresponding targets ti, to, ..., ty,
combined in a matrix X where X(; .y = x,-T and scalar targets t; into
column vector t, the joint conditional distribution of targets t given X
(the likelihood function) is:

P(tIX, w, B) = NILN (tilw T ¢(x:), 71) (10)
Taking the log of the likelihood, we get:
N N
logP(t|w, B) = Elogﬁ — Elog27r — BEp(w) (11)

where Ep(w) is the sum of squares error function coming from the
exponent of the likelihood function.

v
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Bayesian linear regression

1o T 2 _ 1 2
Ep(w) = 5 D (ti = w'é(x))? = 5[t — dw]| (12)
i=1

where @ is the design matrix defined as

do(x1) é1(x1) ... om—1(x1)

. ¢0(:X2) P1(x2) ¢M—:1(X2)

dolx) d1xw) ... a—alxn)
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Bayesian linear regression

Bayesian approach

For a Bayesian treatment, we need a prior probability distribution over w.
For simplicity, we will use an isotropic Gaussian distribution over w with
zero mean:

P(w|a) = N(w|0,a~11) (14)

The posterior can be written as:

P(wlt, a, B) = N(w|mp, Sn) (15)

where
my = BSyd Tt (16)
Syt =al+poTo (17)

can be analytically derived (skipped here) because the conjugate are also
Gaussian.

v
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Bayesian linear regression

Bayesian approach

Taking the log:
logP(W|t, o, B) = BEp(w) — aEy(w) + const (18)
where Ep(w) comes from Eq 12 and

Ew(w) = %WTW (19)

v
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Bayesian linear regression

Posterior distribution

To make a prediction t at a new location x, we use the posterior:

p(tlx,t, o, B) = /p(tlxa w, B)p(wlt, a, B)dw (20)
hence we not only get an estimate, but also an uncertainty:
p(tlx, t, o, B) = N (t|mf é(x), o (x)) (21)

where m[ ¢(x) is the regression function after N observations and o%,(x)
is the corresponding predictive variance:

o3 (x) = % + 6(x)T Suo(x) (22)

v
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