Systems of Linear Equations

Dr. Mihail

November 6, 2018

Overview

What is a system of linear equations?
A collection of linear equations involving the same set variables.

Overview

What is a system of linear equations?

A collection of linear equations involving the same set variables.

Example in 2 variables

$$
\left\{\begin{array}{l}
x-y+1=0 \\
3 x+y-9=0
\end{array}\right.
$$

Overview

Example in 3 variables

$$
\left\{\begin{array}{l}
3 x+2 y-z-1=0 \\
2 x-2 y+4 z+2=0 \\
-x+\frac{1}{2} y-z=0
\end{array}\right.
$$

General form

System of m equations with n unknowns

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

General form

System of m equations with n unknowns

Question: can this be written in matrix form?

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

General form

System of m equations with n unknowns

Question: can this be written in matrix form?

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Answer: Yes. Store coefficients in A, unknowns in x, and translations in b.

General form

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \\
& x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text { and } b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
\end{aligned}
$$

The system can be written in matrix form as $A x=b$

Types of systems

In $A x=b, A$ is a matrix of size m rows by n columns.

Choices of m and n affect solution sets

- $m=n$ and A is full rank (all m rows are linearly independent), the system has a unique solution.
- $m>n$, the system is overdetermined, i.e., there are more equations than variables. Overdetermined systems almost always have no solution (except when enough linear combinations of equations are present).
- $m<n$, the system is underdetermined, i.e., there are fewer equations than variables. Underdetermined systems have either no solution or infinitely many.

Solving them in MATLAB

When in matrix form, $A x=b$, the solution vector $x=A^{-1} b . A^{-1}$ is the inverse of A, such that $A^{-1} A=A A^{-1}=I$, where I is the identity matrix.

Using matrix inverse

$$
\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b} ;
$$

Using matrix left division (Gaussian elimination)

$$
\mathrm{x}=\mathrm{A} \backslash \mathrm{~b} ;
$$

Real world problem

Electrical circuits

Find the currents i_{1}, i_{2} and i_{3}, given the following:

- \sum voltage around a circuit is 0 .
- Voltage $=$ Current \times Resistance, $V=i R$.

Real world problem

Note: there are three circuits in this diagram.

Each circuit has a constraint: zero sum voltage

$$
\left\{\begin{array}{l}
-V_{1}+R_{2}\left(i_{1}-i_{2}\right)+R_{4}\left(i_{1}-i_{3}\right)=0 \\
R_{1} i_{2}+R_{3}\left(i_{2}-i_{3}\right)+R_{2}\left(i_{2}-i_{1}\right)=0 \\
R_{3}\left(i_{3}-i_{2}\right)+R_{5} i_{3}+R_{4}\left(i_{3}-i_{1}\right)=0
\end{array}\right.
$$

Rewriting the system

After slight algebraic manipulation:

$$
\left\{\begin{array}{l}
\left(R_{2}+R_{4}\right) i_{1}+\left(-R_{2}\right) i_{2}+\left(-R_{4}\right) i_{3}=V_{1} \\
\left(-R_{2}\right) i_{1}+\left(R_{1}+R_{2}+R_{3}\right) i_{2}+\left(-R_{3}\right) i_{3}=0 \\
\left(-R_{4}\right) i_{1}+\left(-R_{3}\right) i_{2}+\left(R_{3}+R_{4}+R_{5}\right) i_{3}=0
\end{array}\right.
$$

In-class exercise: given $R_{1}=2 \Omega, R_{2}=4 \Omega, R_{3}=6 \Omega, R_{4}=8 \Omega, R_{5}=10 \Omega$ and $V_{1}=10 \mathrm{~V}$, use MATLAB to solve for i_{1}, i_{2} and i_{3}.

