Introduction to Optimization

Dr. Mihail

October 23, 2018

Overview

What is optimization?

Optimization is a mathematical discipline concerned with finding the maxima and minima of functions, possibly subject to constraints.

Overview

What is optimization?

Optimization is a mathematical discipline concerned with finding the maxima and minima of functions, possibly subject to constraints.

Where is optimization used?

- Almost every Engineering discipline
- Architecture
- Nutrition
- Economics
- etc.

Overview

What do we optimize?

Most often, a real function of n variables:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{R}
$$

Depending on discipline and context, this function is also known as:

- Cost function
- Objective function
- Loss function
- Utility function
- Reward function

Two types of optimization:

- unconstrained
- constrained

Unconstrained

Example

$$
\underset{x, y}{\arg \min } f(x, y)=x^{2}+2 y^{2}
$$

Constrained

Constrained example 1

$$
\underset{x, y}{\arg \min } f(x, y)=x^{2}+2 y^{2}
$$

subject to:

$$
x<2
$$

Constrained

Constrained example 2

$$
\underset{x, y}{\arg \min } f(x, y)=x^{2}+2 y^{2}
$$

subject to:

$$
\begin{array}{r}
y<2 \text { and } \\
-2<x<5
\end{array}
$$

MATLAB anonymous functions

Definition and Syntax

An anonymous function is a function that is not stored in a program file, but is associated with a variable whose data type is function_handle. Anonymous functions can accept inputs and return outputs, just as standard functions do. However, they can contain only a single executable statement. For example, to create an anonymous function that finds the square of a number:
>> sqr $=$ @(x) $x .{ }^{\wedge} 2$;
>> sqr(2)
ans $=$

4

MATLAB anonymous functions

Function with two inputs

```
>> f = @(x, y) sin(x)*\operatorname{cos(y);}
>> f(2, 4)
```

ans $=$
-0.5944

MATLAB anonymous functions

```
Plotting a simple polynomial
f = @(x) (0.5)*x.^4 - 3*x.^3 - 2*x.^2 + 10*x;
xs = linspace(-3, 7, 500);
ys = f(xs);
plot(xs, ys);
```


MATLAB anonymous functions

Where is the minima?

Derivative

$$
\begin{gather*}
f(x)=\frac{1}{2} x^{4}-3 x^{3}-2 x^{2}+10 x \tag{4}\\
f^{\prime}(x)=2 x^{3}-9 x^{2}-4 x+10 \tag{5}
\end{gather*}
$$

Numerical optimization

In this course we will look at numerical optimization (in contrast to analytical methods used in Calculus courses).

Numerical?

We do not know the mathematical formula for the function f we wish to optimize, but we can sample it.

Numerical optimization

```
When we don't know what f}\mathrm{ is, we can still sample
>> f(0.1)
ans =
    0.977050000000000
>> f(-1)
ans =
    -8.500000000000000
>> f(2)
ans =
    -4
```


Numerical optimization

A simple algorithm

- Decide on an interval [low, high]
- Sample x values of the function in that interval
- Pick the lowest value of the function on that interval as the minima

Numerical optimization

```
In MATLAB
domain = linspace(-3, 7, 500);
current_minima = f(domain(1)); % default
min_x = domain(1); % default
for x = domain % loop over domain
    if( f(x) < current_minima )
        min_x = x; % update our estimate
        current_minima = f(x);
    end
end
% print out results
fprintf('The current_minima is at x = %.4f\n', min_x);
fprintf('At x=%.4f, f(x) = %.4f\n', min_x, current_minima);
```


Numerical optimization

Problems with the above approach? Assumptions, assumptions, assumptions...

- Smoothness
- Is global minima in that domain?
- Is there more than one global minima?

Often, in practice, we settle for one solution, knowing there could be a better one.

Constrained Optimization Example

A real world problem

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Area $=100 \cdot 2200=220,000 \mathrm{ft}^{2}$

Area $=700 \cdot 1000=700,000 \mathrm{ft}^{2}$

Area $=1000 \cdot 400=400,000 \mathrm{ft}^{2}$

Fence

The general case

- Maximize $f(x, y)=A=x y$, subject to: $2 x+y=2400$

We first express A as a function of one variable by solving the constraint equation for y and substituting.
$2 x+y=2400 \Longrightarrow y=2400-2 x$
$A=x y=x(2400-2 x)=2400 x-2 x^{2}$

Fence

Plot of $A=2400 x-2 x^{2}$

Where is the area at a maximum?

$$
\begin{gathered}
\frac{d A}{d x}=2400-4 x \\
\frac{d A}{d x}=0 \Longrightarrow x=600
\end{gathered}
$$

Constraint

Visualizing the constraint $2 x+y=2400$

