Plotting in 3D and animation

Dr. Mihail

October 2, 2018

3D Plots

Plots of 1D functions (e.g., $f(x)=x^{2}$) are trivially extended to 2D by using a second input $y: f(x, y)$. When the outputs of these functions is a scalar, we can visualize it in several different ways.

MATLAB function

peaks

We will use use a built-in MATLAB function useful for demonstrating 3D plots called peaks. In particular, the version of peaks with three outputs: $[\mathrm{x}, \mathrm{y}, \mathrm{z}]=$ peaks (n); will generate an output (z) for every pair of x and y, on a grid of size n.
[x, y, z] = peaks(50);

Surface plot

[x, y, z] = peaks(50); surf(x, y, z);

Contour plot

$$
[x, y, z]=\operatorname{peaks}(50) ; \operatorname{contour}(x, y, z) ;
$$

Contour plot with more contour levels

$$
[x, y, z]=\operatorname{peaks}(50) ; \operatorname{contour}(x, y, z, 40) ;
$$

Mesh

Mesh plot
 [x, y, z] = peaks(50);mesh(x, y, z);

Mesh with contour plot

Mesh with contour
 [x, y, z] = peaks(50); meshc (x, y, z);

3D line plot

[x, y, z] = peaks(50);plot3(x(:), y(:), z(:));

Color codes

Color coded image

[x, y, z] = peaks(50);imagesc(z);

We know relative shape, but each color represents a number. We need to add the colorbar.

Color codes

Color coded image

[x, y, z] = peaks(50);imagesc(z);colorbar;

Animations

Basic idea

Plot several times a second with slightly different parameters (the ones you want to animate), cleaning the figure each frame. This naturally leads to the use of loops. The quadratic family of functions is:

$$
f(x)=a x^{2}+b x+c
$$

Let's pick the values 2,3 and 0 for a, b and c :

$$
f(x)=2 x^{2}+3 x
$$

Quadratic

$$
\mathrm{x}=\operatorname{linspace}(-5,5,100) ; \mathrm{y}=2 * \mathrm{x} .{ }^{\wedge} 2+3 * \mathrm{x} \text {; plot }(\mathrm{x}, \mathrm{y}) \text {; }
$$

Let's animate $a=2$ above, from 1 to 3 .

Animating a

a = linspace (1, 3, 100); \% 100 choices for a, between 1 and 3 $\mathrm{x}=$ linspace $(-5,5,100)$; $\%$ x never changes
for one_a = a
figure(1);clf; \% create and clear figure
$y=$ one_a*x.^2 + 3*x; \% new function for a specific a
plot(x, y) ; \% plot
xlim([-5, 5]); \% set x-limits
ylim([-10, 100]); \% set y-limits
title([’a = ' num2str(one_a)]); \% set title
pause(0.1); \% pause one 10th of second each frame end

Animating c in $f(x)=2 x^{2}+3 x+c$

```
c = linspace(-4, 15, 100);
x = linspace(-5, 5, 100); % x never changes
for one_c = c
    figure(1);clf; % create and clear figure
    y = 2*x.^2 + 3*x + one_c; % new function for a specific b
    plot(x, y); % plot
    xlim([-5, 5]); % set x-limits
    ylim([-10, 100]); % set y-limits
    title(['c = ' num2str(one_b) '; in f(x) = 2*x^2 + 3*x + c'
    pause(0.1); % pause each frame
end
```

