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Sets

Definition of a set

A set is a collection of distinct objects, considered as an object in its own
right. For example, the numbers 2, 4, and 6 are distinct objects when
considered separately, but when they are considered collectively they form
a single set of size three, written {2, 4, 6}. Sets are one of the most
fundamental concepts in mathematics.

Have to know symbols

∈: set membership. Example: x ∈ R is read x belongs to the set R.

∪: union. Example: X = A ∪ B is read: X is the result of A union B,
and contains all elements of A and B.

∩: intersection. Example X = A ∩ B is read X is the result of
A intersect B, and contains elements that are in BOTH A and in B
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Number sets

Naturals

Natural numbers: N

Examples: 0, 1, 2, 3, 4, ...

Integers

Integers: Z
Examples: ...− 4,−3,−2,−1, 0, 1, 2, 3, 4, ...

Rationals

Rational numbers: Q
Examples: 1

2 ,
2
3 ,−

10
7 ,

1
3

More generally, rational numbers are ratios of two whole numbers: a
b ,

where a, b ∈ Z subject to b6= 0
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Number sets contd.

Irrationals

Numbers that cannot be expressed as a ratio of two integers

No set symbol, often noted as: R−Q
Examples: π, e,

√
2

Reals

Real numbers: R
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Number sets contd.

Imaginaries

Imaginary numbers: I
They are numbers that, when squared, result in a negative number

Example:
√
−9 = 3i , because (3i)2 = −9, here i2 = −1

Algebraic numbers

Algebraic numbers: A
Numbers that are roots (solutions) to at least one non-zero
polynomial with rational coefficients

Example: x in 2x3 − 5x + 39

What about i

Is i also an algebraic number?
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Number sets contd.

Complex

Complex numbers: C
They are a combination of a real and an imaginary number

Examples 10− 2i , 2 + 3i

More generally, they have the form x + iy , where x , y ∈ R
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Operations on numbers

Venn diagram of number sets
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Operations on numbers

Common operations

Addition: 2 + 3 = 5

Subtraction 2− 3 = −1

Multiplication 2 ∗ 3 = 6

Division 2
3 = 0.(6)

Exponentiation 23 = 8
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Variables

Variable may refer to:

In research: a logical set of attributes

In mathematics: a symbol that represents a quantity in a
mathematical expression

In computer science: a symbolic name associated with a value and
whose associated value may be changed

We shall use all 3 flavors in this course.
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Functions

What is a function?
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Functions

Intuition
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Functions

Intuition useful for computer scientists
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Functions

Informal definition

Think of a function as a “process” that takes input x and produces output
f(x). For example, the function f (x) = x2, takes an input x (a number)
and “processes” it by squaring it.

Plotting a function with a single number as input

(Dr. Mihail) Math Review for CS1340 August 14, 2018 13 / 34



Terminology related to functions

Terms to absolutely have to know

Function input: domain

Function output: range or more accurately image

When plotting a function with scalar inputs, the X -axis is called the
abscissa, the Y -axis is called the ordinate

The input X , is also referred to as the independent variable or
predictor variable, regressor, controlled variable, manipulated
variable, explanatory variable, etc.

The output Y , is also referred to as the dependent variable or
response variable, regressand, measured variable, outcome
variable, output variable, etc.
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Operations on functions

Composition

The idea is to “process” the input through one function, then use the
result of that function as the input to the second. This results in a
different function.

Notation: given two functions f and g , the composition of g and f is
written as (g ◦ f ) = g(f (x)).

Example: if f (x) = 2x + 3, and g(x) = x2, then
(g ◦ f ) = g(f (x)) = g(2x + 3) = (2x + 3)2 = 4x2 + 12x + 9.

(f ◦ g) 6= (g ◦ f ).
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Operations on functions

Differentiation/Integration

Rates of change and areas under the curve.

Derivative of a function f is often noted as f ′ or d
dx [f (x)]

It is important to know if a function is differentiable and where

Indefinite integral of a function f is written as
∫
f (x)dx

Definite integral of a function f over an interval [a, b] is written as∫ b
a f (x)dx
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Analytic/Numerical

In Calculus courses you were probably taught analytic solutions to
differentiation and integration problems. In the real-world, you will most
likely deal with numerical differentiation and integration. More on that
later in the course.
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Vector and Matrix Algebra

Scalars

A scalar is a simple quantity, or a number. For example, in x = 1, x is a
scalar.

Vectors

Going a bit further, a vector is an ordered set of scalars. For example,
[2, 3] is a vector.

Vector elements

The position of the scalar in the ordered set is referred to as the index. In
the example above, the index of the element 2 is 1, since it is the first
element in the set. The index of 3 is 2, since it is the second element.
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More about vectors

Vector dimensionality

The number of elements a vector has is referred to as its
dimensionality. For example, the vector X = [x1, x2, x3] has
dimensionality 3, and if x1, x2, x3 ∈ R, then it is denoted as X ∈ R3.

There can be any number dimensional vectors. For example
6-dimensional vectors ∈ R6.

Vector magnitude

A vector’s magnitude is the distance (or L2-norm) from the origin of
the space it “lives” in and a point. The magnitude is computed
using the Pythagorean theorem (more accurately, a generalization of
that known as Euclidian distance) using the following formula and
notation:

|X | =

√√√√(
n∑

i=1

x2i ) (1)
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But I thought...

That...

Vectors area mathematical object with a magnitude and direction, not
what you just told us.

This definition is nothing but a special case of the definition in the
previous slide.

When the tail and the head are points on 2D plane, how can we compute
magnitude?
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3D visualization

In-class exercise

If a = [1, 2, 3], what is |a|?
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Matrices

Definition

A matrix is a rectangular table of numbers.

Example
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Matrices

Structure in the 2D case

(Dr. Mihail) Math Review for CS1340 August 14, 2018 23 / 34



Matrices

Rows and Columns

One can also think of a matrix as a collection of rows or a collection
of columns.

Or as a collection of row vectors or column vectors

Row/Column vectors

X =

1
2
3


Y =

[
1 2 3

]
X has dimensionality 3x1, and is called a column vector

Y has dimensionality 1x3, and is called a row vector
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Matrices

Collection of column vectors

Given X1 =

1
2
3

 and X2 =

4
5
6

, we can form a matrix Z using X1 and X2:

Z =
[
X1 X2

]
=

1 4
2 5
3 6


Collection of row vectors

Given X1 =
[
1 2 3

]
and X2 =

[
4 5 6

]
, we can form a matrix Z using

X1 and X2:

Z =

[
X1

X2

]
=

[
1 2 3
4 5 6

]
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Indexing

Say, Z =

[
1 2 3
4 5 6

]
. The matrix is 2 rows by 3 colums (2x3).
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Indexing

How can we address an element from a matrix?

Say, Z =

[
1 2 3
4 5 6

]
. The matrix is 2 rows by 3 colums (2x3).

Simple

Each element has an assigned column and row number. Think of Z as
follows:

Z =

[
Z1,1 Z1,2 Z1,3

Z2,1 Z2,2 Z2,3

]
each Zi ,j where i ∈ {possible rows} and j ∈ {possible columns}, where
possible rows for Z is the set {1, 2} and the possible columns for Z is the
set {1, 2, 3}.

“Where” is 5?

Second row, second column: Z2,2
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Operations on vectors and matrices

Addition and subtraction

If two matrices have the same dimensions r by c , including vectors and
scalars as special cases, they can be added or subtracted by adding or
subtracting the elements in the same positions in each matrix.

If A is r by c , and B is r by c , then for C = A + B, Cij = Aij + Bij ,
similarly if C = A− B, Cij = Aij − Bij .
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Operations on vectors and matrices

Multiplication

Matrix multiplication summarizes a set of multiplications and additions.

Multiplication of matrix by scalar: simply multiply each element of
the matrix by the scalar.

Example: a = 2 and X =

[
1 2 3
4 5 6

]
, then Ax or xA is a matrix formed as

follows:

[
2 ∗ 1 2 ∗ 2 2 ∗ 3
2 ∗ 4 2 ∗ 5 2 ∗ 6

]
=

[
2 4 6
8 10 12

]
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Operations on vectors and matrices

Multiplication

Multiplication of two matrices:

The two matrices must be conformable, that is if A is r1 by c1 and B
is r2 by c2, then C = A× B is defined when c1 = r2 and C is of size
r1 by c2.

Cij is found by multiplying each element of row i of A with each
element of column j of B and adding up the multiplied pairs of real
numbers.

Exercises to follow as homework.
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Operations on vectors and matrices

Transposition

The transpose of A, written as AT is created by one the following ways:

write the rows of A as the columns of AT

write the columns of A as the rows of AT

Properties:

cT = c , if c is a scalar

(AT )T = A

(A + B)T = AT + BT

(AB)T = BTAT

(cA)T = cAT

On vectors

Transpose of a row vector results in a column vector. Transpose of a
column vector results in a row vector.
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Inner and outer products of vectors

Given two vectors with the same number of elements, e.g.: a and b both r
by 1, we can define the inner and outer products as follows:

Inner product

aTb =
r∑

i=1

aibi (2)

The inner product of a vector v with itself vT v is equal to the sums of
squares of its elements, so has the property vT v ≥ 0.

Outer product

The outer product results in a matrix, of size r by r . If O = abT is the
outer product matrix, then Oij = aibj .
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Special matrices

Square matrices: have the same number of rows and columns

Diagnoal matrices: square matrices that have all except the elements
on the main diagonal equal to 0

Symmetric matrices: square matrices that have the same numbers
above and below the main diagonal, i.e., a matrix A is symmetric if
and only if Aij = Aji .

Identity matrix: diagonal matrix with all 1s on the main diagonal

(Dr. Mihail) Math Review for CS1340 August 14, 2018 33 / 34



Special matrices

Square matrices: have the same number of rows and columns

Diagnoal matrices: square matrices that have all except the elements
on the main diagonal equal to 0

Symmetric matrices: square matrices that have the same numbers
above and below the main diagonal, i.e., a matrix A is symmetric if
and only if Aij = Aji .

Identity matrix: diagonal matrix with all 1s on the main diagonal

(Dr. Mihail) Math Review for CS1340 August 14, 2018 33 / 34



Special matrices

Square matrices: have the same number of rows and columns

Diagnoal matrices: square matrices that have all except the elements
on the main diagonal equal to 0

Symmetric matrices: square matrices that have the same numbers
above and below the main diagonal, i.e., a matrix A is symmetric if
and only if Aij = Aji .

Identity matrix: diagonal matrix with all 1s on the main diagonal

(Dr. Mihail) Math Review for CS1340 August 14, 2018 33 / 34



Special matrices

Square matrices: have the same number of rows and columns

Diagnoal matrices: square matrices that have all except the elements
on the main diagonal equal to 0

Symmetric matrices: square matrices that have the same numbers
above and below the main diagonal, i.e., a matrix A is symmetric if
and only if Aij = Aji .

Identity matrix: diagonal matrix with all 1s on the main diagonal

(Dr. Mihail) Math Review for CS1340 August 14, 2018 33 / 34



Trace and determinants of square matrices

Trace

The trace of a square matrix is the sum of elements in its main diagonal.
For a matrix A of size rxr , its trace, denoted as Tr(A) is:

Tr(A) =
r∑

i=1

Aii

Important property: tr(A) =
∑

i λi , where λi are the eigenvalues of matrix
A.

Determinant

The determinant of a square matrix is a difficult calculation, but serves
important purposes in optimization problems. Often, the sign is more
important than its exact value. An important property is: det(A) =

∏
i λi
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