Symbolic Mathematics

Dr. Mihail

November 20, 2018

Symbolic

So far in this course we dealt with MATLAB variables that were placeholders for numeric types (e.g., scalars, vectors, matrices), with one exception, anonymous functions: $f = @(x) \dots$

Symbolic

So far in this course we dealt with MATLAB variables that were placeholders for numeric types (e.g., scalars, vectors, matrices), with one exception, anonymous functions: $f = @(x) \dots$

We will now introduce the **symbolic** MATLAB data type. This is a non-numeric data type, used by the MATLAB Symbolic Math Toolbox to solve equations analytically, integrate and differentiate.

Symbolic Variables

To create three symbolic variables x, y and z, the following syntax is used:

```
>> syms x y z
```

Notice the lack of commas.

>> whos

Name	Size	Bytes	Class	Attributes
х	1x1	112	sym	
у	1x1	112	sym	
Z	1x1	112	sym	

Symbolic Expressions

Symbolic expressions are created using symbolic variables. For example:

>> syms x y z >> f = x.^2 + y - z f = x^2 + y - z It can also be created using the sym function:

 $f = sym('x.^2 + y - z')$

Substitution

```
Symbolic expressions can be changed. One useful operation is substitution.
The MATLAB function subs does that. The syntax is as follows:
subs(S, old, new).
For example:
```

```
>> f = sym('x<sup>2</sup> + y - z');
>> subs(f, 'x', 'a')
ans =
a<sup>2</sup> + y - z
```

Utilities

Plotting

MATLAB symbolic toolbox provides a function to plot symbolic expressions of one variable: ezplot(S), where S is the symbolic expression. Example:

>> f = sym('x² + 2*x - 2'); >> ezplot(f)

(Dr. Mihail)

Expansion

MATLAB symbolic toolbox provides functions to manipulate algebraic expressions. For example expand(S):

```
>> f = sym('(x + 2) * (x + 1)');
>> expand(f)
```

ans =

x^2 + 3*x + 2

performs an expansion of f.

Factorization

factor(S):

```
>> f = sym('x<sup>2</sup> + 3*x + 2');
factor(f)
```

ans =

```
(x + 2)*(x + 1)
```

performs the factorization of f.

Simplification

factor(S):

```
>> syms x a b c
>> simplify(exp(c*log(sqrt(a+b))))
```

```
ans =
```

```
(a + b)^{(c/2)}
```

performs the simplification of f.

Utilities

Pretty

```
factor(S):
>> syms x a b c
>> S = simplify(exp(c*log(sqrt(a+b))))
S =
(a + b)^{(c/2)}
>> pretty(S)
ans =
         c/2
(a + b)
>> S = sym('2*x<sup>2</sup> + 3*x - 2');
>> pretty(S)
   2
               2
2 x
       (Dr. Mihail)
                                 Symbolic
```

November 20, 2018 10 / 16

Equation Solving

The solve function is used to solve equations. For example:

```
>> S = sym('x<sup>2</sup> + 2 = 0');
>> solve(S)
```

ans =

i -i

Two complex solutions.

Equation Solving

```
>> S = sym('sin(x) = 2*pi');
>> solve(S)
```

ans =

```
asin(2*pi)
pi - asin(2*pi)
```

Infinite number of solutions, since $a \in \mathcal{R}$.

Differentiation

The diff function performs analytic differentiation.

```
>> S = sym('sin(x)');
>> diff(S)
```

ans =

cos(x)

Differentiation

Another example:

```
>> S = sym('sin(x) + cos(x) - 2*x^2 + 2');
>> diff(S)
```

ans =

 $\cos(x) - 4*x - \sin(x)$

Utilities

Integration

The int(S) function returns the indefinite integral of a symbolic expression S.

Integration

The int(S, 1, 2) function returns the definite integral of a symbolic expression S, evaluated in the range [1, 2].

```
>> S = sym('cos(x)');
>> int(S)
```

ans =

sin(x)

 $\int cos(x,1,2)|_1^2 = sin(2) - sin(1)$