
Teaching Graphics for Games using Microsoft XNA

Radu Paul Mihail, Judy Goldsmith, Nathan Jacobs and Jerzy Jaromczyk
Department of Computer Science

University of Kentucky
Lexington, Kentucky 40506

Email: r.p.mihail@uky.edu, goldsmit@cs.uky.edu, jacobs@cs.uky.edu, jurek@cs.uky.edu

Abstract—We present an approach to teach computer graphics
for game development using Microsoft XNA as a development
platform. Our student body consisted of undergraduate students
who just completed CS2 to seniors in their last semester. Our
course had 4 individual programming assignments that we crafted
in a way to encourage easy assimilation of mathematical concepts
as well as to make debugging easy through visual feedback. We
discuss the topics we covered, pedagogical methods used and
student feedback for each of the programming assignments.

I. INTRODUCTION

Goals of game programming courses include teaching
programming, software engineering, algorithms and computer
graphics. In this paper we present an approach to teaching
computer graphics and the accompanying mathematics in the
context of a game programming course using XNA. We discuss
the assignments used in our course and observations related
to students’ comprehension of the mathematical techniques
required to complete them. Our students ranged from those
who just completed CS2 the previous semester to seniors in
their last semester before graduation. We claim that our course
was successful in meeting the listed goals through our carefully
crafted assignments and the use of on-line discussion forums
as a peer support tool. We discuss our observations about
the effectiveness of visual feedback for learning and applying
mathematical tools used in computer graphics in the context
of a game programming course.

A. Gaming in CS Education

Many CS educators try to make course material more
appealing in an effort to attract more students. One of the
approaches is to add a “fun factor” to courses such as soft-
ware engineering or algorithms. Games provide a platform
for teaching concepts such as object oriented programming,
algorithms, computer graphics. Given the increasing popularity
of games, many students dream of developing their own.
However, complicating factors exist, such as the increasing
complexity of modern games from the myriad of available
techniques coupled with the mathematical tools required. Ef-
forts to enhance courses by making them “game-centric” have
been shown to be successful [1] where student success is
measured by student satisfaction surveys, grades and teacher
course evaluations (TCEs). In this paper, we describe a course
taught in theComputer Science Department at the University
of Kentucky titled “XNA Game Programming”. We taught
graphics programming using XNA as a platform in a course
where groups of students produce a working game as a final
project. We discuss the general structure of the course and
observations regarding students’ performance on programming

assignments. We report observations on student results and dis-
cuss how visual feedback can enhance the learner experience
for certain simple game assignments with specific learning
outcomes. First, we give a brief overview of existing work in
CS education where gaming technology is used as a motivating
factor throughout a curriculum.

a) Programming: Debates on how to teach CS1 are as
old as academic computer science. A recent trend, most likely
sparked by dropping enrollment rates, employs introductory
programming using a game creation theme. Leutenegger et
al. [1] used Flash/ActionScript as a first language due to the
low initial learning overhead. They reported increased enroll-
ment and retention rates. Moreover, they showed that, despite
claims that a game-focus would discourage women, retention
for men and women was equal. Kölling et al. [2] employed a
similar approach to Chen et al. [3] and incorporated gaming
into object oriented programming to motivate students. Both
Kölling and Chen [2], [3] report success due to “immediate
and intuitive feedback about program behaviour”,[2] but give
no further details. Our class was aimed at students who have
already taken CS2 and were expected to have basic pro-
gramming competence and familiarity with an object oriented
programming language.

b) Algorithms and Data Structures: Attempts to make
abstract programming concepts and algorithms more attractive
can also make use of games. Tan et al. [4] published a case
study where second year IT students are taught data structures
using a game that helps them visualize data structures and
access operations on stacks and queues. Hakulinen et al. [5]
use card games as teaching tools for algorithms. While a
comprehensive review of the related literature is beyond the
scope of this paper, we emphasize that more work needs to be
done in quantitatively evaluating the effectiveness of “game-
centric” courses with respect to specific learning outcomes.

c) Software Engineering: Wang et al. [6] describe a
case study where they integrated game development using
XNA into a software engineering course. Here, game develop-
ment was used in an attempt to motivate and increase interest
in the final project. They reported that students had a more
positive attitude toward the game focused course, as opposed
to the standard course, although some students spent more time
on developing the game than on the software architecture. It
is worth noting that the authors in [6] mentioned a sparse
literature on architecture in the game development domain.
The reader can refer to [7], [8], [9] for other examples.

d) Computer Graphics: Computer graphics is a large
part of the game development process. Standard graphics
classes focus on mathematics and algorithms. Du et al. [10]



claim that the traditional methods of teaching computer graph-
ics to students whose focus is game development is ineffective
due to poor mathematical foundation. In our course, we
attempted to bridge this gap by adding a “fun factor” to the
mathematics required for graphics in game development. We
introduced the required mathematics and constructed assign-
ments such that visual feedback during the implementation
phase served as a troubleshooting tool and discouraged shal-
low understanding of the underlying mathematics. Feedback
from students’ write-ups seem to support our hypothesis that
carefully crafted assignments lead to better assimilation of the
materials taught.

II. XNA IN THE CLASSROOM

XNA is a collection of tools from Microsoft designed
to ease the burden on game programmers by offering built
in functionality commonly used in games. Examples are a
rich content processor, classes that implement mathematical
functions often used in graphics programming and an easy to
use API for sound and music playback. This burden release
offers educators a tool that can be integrated in technical
programs. In one such example, Linhoff et al. [11] discuss
GAM 380, a course offered at the School of Computer
Science, Telecommunications, and Information Systems at
DePaul University (DePaul CTI) in their Game Development
Program. The intent of this course was to focus on content
creation in a mixed programmer and non-programmer student
population. Students were given sample programs for which
they would create fonts, icons, 3D models animations and
other content. They were encouraged to extend the samples,
although programming was not taught as part of the class.
They report positive student responses, and note that grades
for students with a richer programming background were on
average a letter grade higher. This finding suggests that mixing
artists and programmers can be done, but more work needs to
be done to ensure skill sets are complementary. Our course
was strictly technical with a focus on graphics programming
for games.

A. Material covered in our course

This class was intended to give students an exposure to
basic concepts and techniques for game programming. We
started by introducing XNA and C#, the game loop, game
states, scoring, polled input, game components and empha-
sized the importance of OOP. Our next goal was to lay the
foundations of 2D game graphics through the use of sprites
and primitives. Drawing sprites in XNA is straightforward:
SpriteBatch.Draw() method has several overloads, all of which
have a position parameter (Vector2D) in screen coordinates.
Drawing primitives in XNA is not as straightforward; it
requires understanding the full graphics pipeline. We avoided
prematurely teaching this by giving students “helper” code
which implemented orthographic projection (covered later in
the course), to facilitate drawing primitives (e.g., lines and
triangles) in screen space. We then introduced vector and
matrix operations that were applied to derive transformations
in 2D (rotations, translations and scaling) and demonstrated
during lecture. This allowed a smooth transition to 3D graphics
and a presentation of the full graphics pipeline, although stu-
dents were tested on a small subset of the concepts presented

(those required for the programming assignments). Projective
geometry was the next topic covered; we shed light on the
previously mysterious “helper” code (orthographic projection)
and derived the perspective projection matrix. Given this
foundation, we then taught texturing, 3D models, cameras
and collision detection. The “mystery” thus far was the use
of XNA’s BasicEffect, until we covered High-Level Shader
Language (HLSL). The course concluded with keyframe and
skeletal animation.

B. Pedagogical methods used

Our course had a lecture component, 4 individual program-
ming assignments, 5 quizzes, weekly on-line discussion forums
and a final group project. During the lectures, mathematics
were formally introduced and applied in the XNA framework
to demonstrate results. The programming assignments were
small games. Students had to implement the techniques learned
in class and produce a working game for each of the four
assignments. Our course also employed online discussion
forums intended as a peer support tool. Students had to post
an original thread every week (minimum of two paragraphs)
and respond to three posts from other students (a minimum
of one paragraph). We found this to be an effective means of
getting peer support. We are verifying this finding.

C. Course objectives

The principal objective was to provide students basic
knowledge of game development, with a focus on computer
graphics. The prerequisite for this course was CS2, which
meant we could not assume a strong mathematical background.
We planned to introduce concepts from linear algebra and
algorithms as needed through the progression of the course
and tailored the programming assignments in a way that en-
couraged discovery and motivate the assimilation of concepts
through final products: simple games.

In the beginning of the course we administered a survey to
elicit prior knowledge of the topics to be covered. Below is a
summary of relevant questions:

• Have you taken a course in linear algebra?
Yes: 58%, No: 42%

• How confident are you in your programming skills
(object oriented programming in a high level lan-
guage)?
Very confident: 22%, Confident: 58%, Not confident:
9.6%, Insecure: 9.6%

• Are you familiar with the pinhole camera model?
Yes: 32%, No: 67%

More than half of the students reported taking linear algebra
prior to this course. Although linear algebra was not required,
we note from our observations that it helps to greatly reduce
anxiety about most topics in a game programming course with
a focus on computer graphics.

III. PROGRAMMING ASSIGNMENTS

We now present the programming assignments used in
this course. Three of the four assignments were meant to
be complete working games (albeit simple) with goals and



Fig. 1. Screenshot of our sample Snake game.

objectives defined by the students. This freedom to choose the
game objectives was appreciated; they reported putting more
effort into the projects.

A. Snake Game

The first programming assignment in this course was a sim-
ple snake game (see Figure 1). As a first contact with the XNA
framework, this project encouraged the discovery of solutions
to typical problems in 2D game programming. Drawing sprites
in XNA is straightforward; XNA’s SpriteBatch.Draw method
provides a variety of options, including scaling, transparency
handling and rotation among others. For extra credit, students
were given the freedom to improve the final appearance of
the game. For example, the sprite representing the head of
the snake can change as a function of direction. Another
improvement is to use include animations (spritesheets) to
make the appearance more pleasing.

The XNA framework includes a game loop with two impor-
tant functions: Update() and Draw(), both of which are called
at a default rate of 60/second. Most snake implementations are
grid based; the snake is usually composed of discrete blocks
that advance in the current direction at a rate much lower
than 60 frames/second. Students had to reduce the frame rate
in one of two ways: changing the TargetElapsedTime of the
Game class, or advancing the snake once every x frames. This
decision had a direct impact on the responsiveness of the game
because of the way input is handled through polling. Changing
the rate at which Update() and Draw() are called means a
short-lived keystroke may not be detected, while constraining
snake movement every x frames and polling every frame
increases responsiveness. The majority of students picked the
most responsive option, despite the small increase in code
complexity.

The snake can collide with itself, screen (window) bound-
aries and “food”. Contingent on students’ decision of how
to store the world state (grid constraints or screen pixels),
collisions can be more or less accurate. Here, students were
encouraged to discover the trade-offs of these two approaches.

Student feedback A common source of confusion stemmed
from drawing grid lines. When the client window is resized,
a common scaling factor needs to be applied to both primi-
tives (lines) and sprites. Students seemed to have difficulties
thinking of different world spaces coexisting simultaneously.
Another commonly reported problem was how to structure

Fig. 2. Screenshot of our sample billboarding game. In this game, the goal
was to find all the “eggs” in a world filled with randomly placed houses drawn
as billboards.

code. We encouraged the use of best practice OOP, however,
we left decisions such as what the functionality of a single
GameComponent is to them. We did not require students to
submit a design prior to submission; we will ask in the future.

B. Billboarding

Transitioning from programming flat game worlds to a third
dimension introduces several complicating factors: solid un-
derstanding of projective geometry, extending standard (scale,
translation and rotation) transformations to 3D using homoge-
neous coordinates, and the abstractization of raster operations
(i.e., thinking in terms of arbitrarily scaled spaces). Our peda-
gogical approach to this step of the learning process revolved
around a programming assignment we uninterestingly titled
Billboarding. We eased the transition to 3D by first introducing
orthogonal projection. This is conceptually easy to grasp
because in its simplest form, it involves simply discarding the
z component of a point in 3D, thus projecting all points on the
XY plane that can be mapped to screen coordinates. While
students claimed to understand the concept of projection both
as a many-to-one mapping from 3D to a plane and as a linear
transformation, some were vocal about lacking intuition, i.e.,
“Why does it work?” Projection is a topic taught in linear
algebra and requires defining vectors, matrices, vector spaces,
range, null space of a matrix, etc. We used art as a teaching
tool by showing examples from Renaissance artists when
perspective started to be formally stated (e.g., Abrecht Dürer’s
“The Painter’s Manual”, ca. 1525). This encouraged lively
classroom discussion, where students with a background in art
could contribute. This discussion gave the instructor a smooth
segue to the derivation of perspective projection rules using
similar triangles. This was stated first as a point dependent
matrix, later extended to a point independent projection matrix
using homogeneous coordinates.

The billboarding assignment was intended to be a preamble
to using the full graphics pipeline. The idea was to create a
small game using a first person camera where the objective
was to find some objects hidden in the world or some other
interaction of students’ choosing (see Figure 2). The world
was restricted to a plane where the player and objects “live”.
We taught the concept of a camera as an “alignment tool”:
we know how to (easily) project points onto the XY plane,
but the camera’s image plane does not match the worlds’, so



Fig. 3. Top-down view of the camera transformation. This program was given
to students to help them visualize the camera transformation. Red objects are
drawn in world space and the yellow objects are the same objects in camera
space. The camera can be moved and rotated using the arrow keys.

a rigid body transformation needs to be done to align them.
The projection and view matrices can easily be constructed
in XNA using the Matrix.CreatePerspective variants and Ma-
trix.CreateLookAt. For this assignment, students were tasked
with implementing their own pipeline, with a restriction to
only use XNA’s SpriteBatch.Draw method, where the position
argument is in screen space.

We now discuss the steps involved in solving this problem
and the difficulties students encountered. The first decision was
the scale of the world. We encouraged students to restrict the
world to a unit square, although any scale could be used. Next,
students had to implement a camera, capable of translation
(in the direction given by the forward and side vectors) and
rotation (yaw, along the up vector, which is kept constant).
This is simply a rigid body transformation in 2D that can be
easily visualized. We provided an example to help students
experiment with the camera transformation (see Figure 3).
This example encouraged them to check the results of their
computations and avoid common pitfalls such as performing
the rotation prior to the translation (although some students
did that).

The next step is to draw the objects using SpriteBatch.Draw
calls, which requires computing the scale of the sprite with
respect to the distance from the camera and a 2D projection
(x′) from the XZ plane to the image plane. The image plane
was encouraged to be z = 1 (focal length d of 1), such that
students would arrive at the simple result x′ = x

z using the
same method based on similar triangles we used to derive
the point dependent perspective projection matrix. This result
needs to be scaled such that it matches screen coordinates for
clipping to occur naturally (XNA’s SpriteBatch.Draw behavior
is quite tolerant of such abuses). Finally, the sprites had to
change with respect to the angle between the object and the
camera to achieve a 3D effect.

Student feedback The most common reported problem was
difficulty understanding the mathematics required to imple-
ment the camera and projection transformations. The order of
operations (translation/rotation) in the camera transformations
provided visual feedback that led many students to fix the
problem while others asked the instructor for help. Computing
the angle between the camera and objects was also difficult for

Fig. 4. Terrain based game. The students were free to choose goals/objectives
of the game.

a small percentage of our students. The projection operation
required scaling the sprites, which was also reported to cause
difficulties in completing this project.

C. Terrain based game

The third assignment in our course was similar to the
billboarding assignment, but the world was no longer flat (see
Figure 4). Instead, students generated a terrain mesh from
a height map and used the full graphics pipeline to draw
the world while constraining the camera’s y position to the
surface of the terrain. This used bilinear interpolation so that
movement was smooth, irrespective of the terrain “roughness”.

The assignment was designed as an extension of the
billboarding assignment. Before this project was due, we
taught how to import, use and draw 3D models in XNA.
XNA includes the BasicEffect class, a useful tool for someone
without any HLSL experience. Students were encouraged to
use the full functionality of the BasicEffect class that includes
texturing, basic lighting and fog.

Collision detection was discussed throughout the course.
The XNA framework provides beautifully interfaced collision
detection algorithms for various primitives (e.g., bounding
boxes and bounding spheres). To get full credit, students had
to “plant” at least two models in the world and implement
some form of interaction with the models. Most students went
beyond the basic requirements and created simple first person
shooters.

Design decisions prior to writing code proved imperative
in successfully completing this assignment. A map from the
camera’s position on the XZ plane to a discrete array of
elevations from a height map was needed. If this mapping
was incorrect, the player would “walk” through the terrain
and models would be placed incorrectly. Here, students could
troubleshoot incorrect mapping by observing placement of the
camera and models.

Student feedback A common problem students reported was
related to the behavior of SpriteBatch.Begin() method. Al-
though documented, this call1 changes a number of device

1Most students chose to display game state variables (e.g., lives, time, etc.)
using a SpriteBatch.DrawText() call.



Fig. 5. Mirror effect with HLSL applied to the “Utah teapot” model.

states: BlendState, DepthStencilState, RasterizerState and Sam-
plerStates, among others, causing 3D objects to render incor-
rectly. Students with a solid foundation in graphics identified
this problem easily, while others asked for help.

D. Mirror effect

We covered HLSL near the end of the semester. This
topic was popular with students because it shed light on
XNA’s BasicEffect effect class, which many students thought
of as a “black box” rich with functionality. Our approach
to teaching HLSL was hands on: write code during lecture
and discuss various aspects of the language. Students who
had prior experience with graphics programming, but not with
shader code, reported that seeing the instructor write HLSL
code in class helped reduce anxiety tremendously. We started
with texture mapping, followed by theory on diffuse and
specular reflection models. We then demonstrated different
shader models (per pixel or per vertex) and discussed trade-
offs.

Our goal with the fourth assignment in this course was
to give students hands-on experience with HLSL to solve a
problem for which the resulting solution can be intuitively
verified for accuracy: a reflective shader. The assignment was
set up such that an image in the world (on a plane parallel to
the yz plane) would be reflected on a model rendered using
a shader the students were asked to write. The choice of the
image on the yz plane was to simplify sampling the texture
map after the ray-plane intersection computation.

For this assignment, we provided a Visual Studio project,
complete with all the C# code needed. We also provided two
models (a cube and the famous Utah Teapot) and encouraged
students to thoroughly test their solution with other models to
ensure correctness. During runtime, the models would move
and rotate in the world. The existence of a world transfor-
mation (with a translation component) required discarding the
translation components of the world matrix when transforming
the normal vectors passed to the shader from the model.

The solution to this assignment requires the following
computations: incident vector (“eye” vector), reflection vector
and the ray-plane intersection between the reflection vector
and the plane on which the image is placed on. The ray-plane
intersection computation involves solving for t such that the
point on the plane is p = p0 + t ∗ ref vector where p0 is a
model vertex. Because the image to be reflected was on the

yz plane, it sufficed to use p.y and p.z as arguments for the
texture sampler call.

Student feedback This assignment was reportedly the most
rewarding for our students. Few had prior experience with
shaders, so the successful completion of this assignment in-
creased their confidence and some groups implemented effects
with HLSL for their final project. A common complaint was
the inability to use a debugger such as the one offered by
Visual Studio. Since the assignment involved relatively few
computations, students could pin-point problems by running
the program and visually inspecting the results.

IV. CONCLUSION

In this paper we presented an approach to teaching graphics
for game programming using XNA. Our student body con-
sisted of students who took CS2 the previous semester to
seniors close to graduation. We discussed the materials we
covered in this course as well as the programming assignments.
The prerequisite for this course was CS2 (programming in
an object oriented language). While linear algebra was not
required, students who had taken that class were clearly more
comfortable with the materials covered and completing the
assignments, a fact reflected in the final grades. The pro-
gramming assignments were crafted so that the assimilation
of materials was rewarding (3 of the 4 were working games)
and debugging was helped by visual feedback.

REFERENCES

[1] S. Leutenegger and J. Edgington, “A games first approach to teaching
introductory programming,” in ACM SIGCSE Bulletin, vol. 39, no. 1.
ACM, 2007, pp. 115–118.

[2] M. Kölling and P. Henriksen, “Game programming in introductory
courses with direct state manipulation,” ACM SIGCSE Bulletin, vol. 37,
no. 3, pp. 59–63, 2005.

[3] W.-K. Chen and Y. C. Cheng, “Teaching object-oriented programming
laboratory with computer game programming,” Education, IEEE Trans-
actions on, vol. 50, no. 3, pp. 197–203, 2007.

[4] B. Tan and J. L. K. Seng, “Game-based learning for data structures: A
case study,” in Computer Engineering and Technology (ICCET), 2010
2nd International Conference on, vol. 6. IEEE, 2010, pp. V6–718.

[5] L. Hakulinen, “Card games for teaching data structures and algorithms,”
in Proceedings of the 11th Koli Calling International Conference on
Computing Education Research. ACM, 2011, pp. 120–121.

[6] A. I. Wang and B. Wu, “Using game development to teach software
architecture,” International Journal of Computer Games Technology,
vol. 2011, p. 4, 2011.

[7] K. Claypool and M. Claypool, “Teaching software engineering through
game design,” ACM SIGCSE Bulletin, vol. 37, no. 3, pp. 123–127, 2005.

[8] P. Gestwicki and F.-S. Sun, “Teaching design patterns through computer
game development,” Journal on Educational Resources in Computing
(JERIC), vol. 8, no. 1, p. 2, 2008.

[9] N. E. Cagiltay, “Teaching software engineering by means of computer-
game development: Challenges and opportunities,” British Journal of
Educational Technology, vol. 38, no. 3, pp. 405–415, 2007.

[10] H. Du and L. Shu, “Teaching computer graphics in digital game
specialty,” in Information Computing and Applications. Springer, 2011,
pp. 91–97.

[11] J. Linhoff and A. Settle, “Teaching game programming using XNA,”
ACM SIGCSE Bulletin, vol. 40, no. 3, pp. 250–254, 2008.


