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Abstract. Rainbows are a natural cue for calibrating outdoor imagery.
While ephemeral, they provide unique calibration cues because they are
centered exactly opposite the sun and have an outer radius of 42 de-
grees. In this work, we define the geometry of a rainbow and describe
minimal sets of constraints that are sufficient for estimating camera cal-
ibration. We present both semi-automatic and fully automatic methods
to calibrate a camera using an image of a rainbow. To demonstrate our
methods, we have collected a large database of rainbow images and use
these to evaluate calibration accuracy and to create an empirical model
of rainbow appearance. We show how this model can be used to edit
rainbow appearance in natural images and how rainbow geometry, in
conjunction with a horizon line and capture time, provides an estimate
of camera location. While we focus on rainbows, many of the geometric
properties and algorithms we present also apply to other solar-refractive
phenomena, such as parhelion, often called sun dogs, and the 22 degree
solar halo.

1 Introduction

Understanding natural outdoor scenes is challenging because a large number of
physical factors affect the imaging process. Natural phenomena provide a variety
of cues for estimating camera calibration and understanding scene structure.
For example, image haze is a strong cue for inferring scene models [(], as are
cloud shadows from a partly cloudy day [7], and the motion of shadows is a
cue for camera calibration [33]. We explore another natural cue, the rainbow.
Rainbows are a fascinating atmospheric effect—in addition to having strong
symbolic meaning, they also have interesting geometric properties.

In particular, the location of a rainbow is exactly constrained by the relative
geometry of the sun and the viewer. A rainbow is always centered around the
antisolar point (the point exactly opposite the sun), and the outer radius of the
rainbow is about 42° from the line connecting the viewer’s eye to the antisolar
point. In Figure 1, the projection of the antisolar point is visible as the shadow of
the photographer’s head. These strong geometric constraints make the rainbow
a powerful calibration object.

In this paper, we explore these constraints both theoretically and practically.
First, we characterize the minimal set of constraints necessary to capture the
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Fig.1: The rainbow is an ephemeral, but well-defined, geometric object that
can be used to perform camera calibration and provides constraints on camera
location. The figure above shows the final result of our calibration method, with
the image of the antisolar point (yellow circle) and two color bands (red and
blue) on the primary rainbow. (“Double Alaskan rainbow” by Eric Rolph - CC
BY-SA 2.5)

relative viewing geometry of the camera and the sun in both calibrated and
uncalibrated cases. Second, we introduce methods for estimating this geometry
from an image of rainbow, including an image-based refinement technique. Fi-
nally, we evaluate the ability of these methods to calibrate a large dataset of real
world images and present several use-cases: a data-driven approach to rainbow
appearance modeling, rainbow editing and geolocation estimation.

From a practical standpoint, single-image calibration “in the wild” has be-
come an important vision problem. Many cues have been proposed because not
every scene has, for example, orthogonal vanishing points or coplanar circles.
Rainbows and similar solar refractive phenomena are an important new cue for
this problem. While rainbows are rare, there are many rainbow pictures and
many webcams will eventually view a rainbow. Rainbows have advantages for
calibration: are one of the few calibration cues suitable for “mostly sky” web-
cams, are easier to localize than the sun (which results in a large oversaturated
image region), give strong constraints on the focal length and sun position from
a single image, and have more distinctive appearance than sky color gradients.

We focus on rainbows but our geometric framework and analysis applies to
other solar-refractive phenomena, e.g., sun dogs and halos, and gives a foundation
for future work in using webcams to estimate atmospheric conditions using such
phenomena.
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1.1 Related Work

Our work introduces a new cue that provides constraints on intrinsic and extrin-
sic camera calibration. Typical approaches to intrinsic camera calibration rely
on either reference objects, such as coplanar circles [3], camera motions, such
as camera rotation [32], or both [34]. Extrinsic calibration approaches rely on
matching to known, static scene elements [18]. However, when such objects do
not exist, and the camera is in an unpopulated area without reference imagery,
the problem is more challenging.

Recent interest in calibrating Internet imagery has led to the need for new
techniques for intrinsic and extrinsic camera calibration. Much of this work has
focused on problems associated with calibrating widely distributed cameras, such
as webcams. In this domain, clear-sky appearance has been used to estimate
orientation, focal length, and camera location [10,15,13,16]. Other work has ex-
plored the use of video from cloudy days for estimating focal length and absolute
orientation [7,8]. In addition, photometric and shadowing cues have been used for
geolocalization and calibration [19,11,12,9,27]. Our work is most closely related
to work on calibration and localization from sky appearance, with the important
differences being that rainbows provide much stronger, single-frame constraints
on the focal length and have very consistent color properties.

Methods for outdoor appearance modeling are used for applications ranging
from compression to scene understanding. The main focus is on modeling the
effect of sun motion and weather conditions on scene appearance. Sunkavalli
et al. [30] build a factored representation that directly models sun motion and
shadows. Subsequent work in this area has sought to extract deeper scene in-
formation, such as surface material properties [29]. More recently, the focus has
shifted to estimating 3D scene models using photometric cues [1,2]. While most
work has focused on static scene elements, there has also been significant research
in building models of sky appearance. Lalonde et al. propose to use webcam im-
age sequences to estimate global lighting models [14] for object insertion. Shen et
al. [28] estimate local weather conditions. Peng and Chen [23] propose a random
field model to estimate per-pixel sky cloudiness. We extend this line of research
by including the geometry and appearance of rainbows.

2 Rainbow Image Formation

We briefly describe the physical process which leads to rainbows and the geo-
metric relationship between the camera calibration, sun position and the image
location of the rainbow.

2.1 Physical Rainbow Formation

We present the basic aspects of the physical process that creates rainbows,
see [22] for additional details. Rainbows are an atmospheric phenomenon prompted
by the interplay of light and water droplets. Typically, rainbows begin with a
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passing rain shower leaving behind water droplets suspended in the air. In some
light paths through a droplet, the ray refracts upon entering, undergoes an in-
ternal reflection, and refracts again upon exiting. These light paths generate a
rainbow. The amount that a ray of light bends is a function of its wavelength. For
example, red light (longer wavelength) bends slightly less then blue and violet.
The dispersion of light inside water droplets separates light into its component
colors, resulting in a spectrum of light appearing in the sky.

The location of a rainbow depends en-
tirely on the sun position. From the point

of view of the observer, the outside of the Sun
rainbow (red) is at roughly a 42° angle
relative to the antisolar point, the point @ Observer

directly opposite the sun. As we decrease
the angular distance from 42°, the col-
ors gradually change from red to violet.
The rays from the rainbow to the observer
form a conical surface (see Figure 2).
While the precise relationship between an-
gle and color depends somewhat on at-
mospheric scattering, particularly the size

and shape of the water droplets [17], we

assume spherical drops and use reference Antsolar point

angles as computed in [26] (e.g. red =

42.3° and violet = 40.4°). Fig. 2: Rainbows are visual phenom-

ena with relatively simple geometric
properties that result from the re-
2.2 Geometry of Rainbow Images fraction of sunlight inside of millions
of water droplets.

We now define the relationship between

the image of the antisolar point (IAP) and

a rainbow point with known color. Consider a world point, P = [X,Y, Z]T, that
projects to an image location, Ap = [Au, v, A\]' = K[R | t]P, with extrinsic
rotation, R, and translation, t. We assume the camera has zero skew, known
principal point, square pixels, and is aligned with the world frame. This results
in a simple pinhole camera model, Ap = KP = diag([f, f,1])P, with the focal
length, f, as the only unknown.

We define the absolute angle constraint which relates the image point on the
rainbow, p, and the IAP, s, as follows:

PTKTTK s = K p|l[|K sl cos(6,) (1)
where, 6, is the angle between the rainbow ray, K~1p, and the antisolar point,

K~ 1s. In practice, the camera calibration, K, and the projection of the antisolar
point, s, are unknown and we estimate 6, from image data.
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3 Rainbow to Calibration and Sun Position

The image of a rainbow provides strong constraints on the calibration of the
camera and the position of the sun. We begin with an analysis of the constraints
in different settings and then describe several alternative calibration methods
that build upon them.

3.1 Constraint Analysis

We describe inherent ambiguities and minimally sufficient sets of constraints for
two scenarios: one with a fully calibrated camera and one with an uncalibrated
camera.

Calibrated Camera When the camera calibration matrix, K, is known, the
location of the rainbow in image space is entirely dependent on the IAP, s. We
show that, in the calibrated case, three points at known angles are necessary
and sufficient to uniquely identify s.

Consider a set of image points with known angles relative to the antisolar
point. With a single point, p, there is a circle of possible solutions, on the view
sphere, for the antisolar point, K~'s, which make the required angle, 0, with
the pixel ray, K~ !p. With two distinct points at known angles, there are at most
two solutions where the respective circles intersect. Intuitively, this is because the
image of the rainbow could be “bent” in two different directions. Therefore, three
distinct points at known angles are necessary to uniquely estimate the antisolar
point. This minimal set of constraints is visualized in Figure 3. It shows that,
in the ideal case, the circle of possible solutions for each point all intersect at a
single location, the antisolar point.
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Fig. 3: Absolute Angle Constraint: (left) A synthetic rainbow image (FOV = 60°)
with image points annotated on different color bands. (right) For each annotated
point there is a circle on the view sphere where the antisolar point could be. In
the calibrated case, three points at known angles are necessary to solve for an
unambiguous antisolar point.
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Given these constraints, numerous algorithms could be used to estimate the
antisolar point, and hence the sun position, using three, or more image con-
straints. We have developed analytic methods and nonlinear optimization meth-
ods, but we omit them here and instead focus on the uncalibrated case.

Uncalibrated Camera We now consider the case of an uncalibrated camera
in which both the IAP, s, and the focal length, f are unknown. We initially
focus on defining angular constraints and show that at least three points, at two
distinct angles relative to the antisolar point, are required to fully constrain a
solution for s and f. In the calibrated case, three points at known angles, which
are not necessarily distinct, are needed to guarantee a unique solution for the
antisolar point. When the focal length is unknown, we find that to eliminate an
ambiguity caused by infinite focal lengths, points must be at two distinct angles.
This is demonstrated visually in Figure 4.

Given a single point at a known angle, there is a circle of possible solutions
on the view sphere, at every possible focal length, that make the required angle
with the corresponding pixel ray. With two points at the same angle, there is
an interval [x,00) of focal lengths where the circles will intersect. At infinite
focal length, the pixel rays lie along the optical axis and the circles converge.
This shows we need at least two distinct angles to remove infinity as a solution.
Therefore, with unknown focal length, the minimal configuration necessary to
get an unambiguous solution for f and s is three points and two distinct angles.

90 90 El)

n — 7 & =
g g ) A ¢ FW
g Al g/ \ g <
=1 \ = — g
£ g £
-90 -90 -90
-180 180 -180 180 -180 180
azimuth (degrees) azimuth (degrees) azimuth (degrees)
(a) FOV = 150° (b) FOV = 100° (c) FOV = 75°
90 % WA
= g = ¢4 =
8 $ —
(=3 i=J =3
s s s
-90 -90 -90
-180 180 -180 180 -180 180
azimuth (degrees) azimuth (degrees) azimuth (degrees)
(d) FOV = 60° (e) FOV = 25° (f) FOV = .01°

Fig. 4: Absolute Angle Constraint: In the uncalibrated case, the constraints for
each annotated point (Figure 3, left) change as the focal length changes. At the
correct focal length, all constraints are satisfied at the true antisolar point.
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3.2 Estimating Sun Position and Calibration

Three rainbows points with at least two distinct angles are sufficient to guarantee
a unique camera calibration solution. We now define several alternative objective
functions for solving the calibration problem given the image of a rainbow.

Absolute Angular Error Given a set of image points, {p;}, at known angles,
{6;}, relative to the IAP, s, we formulate the following objective function:

M Tr—Te—1

. 1 Pi K K S

argunin ) |cos (|Klp-||K1s|> 0
fis iz g

(2)

derived from the absolute angle constraint (1). We first grid sample 20 focal
lengths, f, between 1 and 10 image widths, and for each, optimize over the IAP,
s. The minimum error configuration is used to initialize a Nelder-Mead simplex
search [21] to estimate the focal length and sun position.

Figure 5 shows the shape of this objective function with different numbers of
known points and distinct angles. As described in Section 3.1, three points and
two distinct angles is the minimal configuration necessary to ensure a unique
global minima.
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Fig. 5: The solution space of the absolute angular error objective function (2) as
the number of points and distinct angles is varied.

Absolute Pixel Error In addition to directly minimizing error based on angu-
lar constraints, we can also optimize over image-space distances. Consider once
again a set of image points, {p;}, at known angles, {6;}, relative to the IAP, s.
We define the following optimization problem:

argmin Y ~ ||p; — pil|? (3)

f557{pi} '3
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where p; is the projection of the image point, p;, onto the rainbow and where the
IAP, s, and the projection of p; onto the estimated rainbow, §;, are constrained
by (1). We use Nelder-Mead simplex search [21] to estimate the focal length and
sun position. We initialize the optimization by fitting a circle, with radius, r,
and center, ¢, to the clicked points: fy = r/tan(41°), so = ¢, and {p; }o = {pi}-

As compared to the angular error method, this approach has the advantage
of functioning correctly with image points at a single fixed angle, it does not
have a trivial solution at f = oo and the objective function more accurately
models typical user errors in clicking points.

3.3 Automatic Calibration Refinement

Since it can sometimes be difficult to identify the precise angle for a particular
point on a rainbow, we propose a method to automatically refine our manual cal-
ibration estimates by maximizing the correlation between the observed rainbow
and the expected appearance of a rainbow.

We first estimate the expected appearance of a rainbow from a set of rainbow
images with known focal length, f, and IAP, s. For each image, we compute the
angle, 6, relative to s for each pixel p using (1):

TK-TK s
0, = cos ! (p) . 4
b KTl s )

We define a rainbow signature as the average color change in the L*a*b* color
space, for a given antisolar angle, §, as we move radially away from the IAP.
We use the radial derivative because it is much less dependent on the scene
behind the rainbow than the raw intensity. We construct a rainbow signature
by quantizing 6 (we use 200 bins between [38°,44°]) and averaging the radial
image gradients across the image regions that contain a rainbow. To model the
expected appearance of a rainbow, we average the signatures for each image in
our dataset and obtain an average rainbow signature, £/ [%]. To reduce blurring
in the rainbow signature due to imperfect manual calibration, we sequentially
align individual signatures [1] to the average signature until convergence.

Given this average rainbow signature, and a new unseen rainbow, we re-
fine our estimate of the focal length and the TAP by maximizing the average
correlation between the signature of each radial line and the average signature
using Nelder-Mead simplex search [21]. In practice, directly optimizing over fo-
cal length and the TAP failed to converge to a globally optimal solution due to
coupling between the parameters. To reduce this coupling, we reparameterize
the problem by replacing the IAP, s, by a point on the rainbow at 41 degrees,
on the line from the sun position to the principal point. The practical result is
that focal length can change without requiring a change in the sun position to
keep the rainbow nearby in roughly the same image location. This small change
significantly improved our automatic refinement results.
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Fig. 6: Rainbow Localization: (left) input rainbow image, (middle) probability
of rainbow pixel, and (right) predicted antisolar angle.

3.4 Fully Automatic Calibration

We describe a discriminative approach to rainbow localization and camera cal-
ibration that eliminates the need for manually clicking rainbow points. This
is challenging because rainbows are transparent, often highly transparent, and
their appearance varies due to atmospheric conditions [20], camera optics, CCD
sensor properties and software post-processing.

For an uncalibrated rainbow image, we first use random forest regression to
estimate two per-pixel labels: the likelihood that the pixel contains a rainbow and
the most likely angle the backprojected pixel ray makes with the antisolar point.
We use a 7 x 7 HSV patch and the eigenvalues and first eigenvector of the 2D
structure tensor of the hue channel for each pixel as low-level features. We build a
training set by manually calibrating a set of images, assigning a label of rainbow
or not (manually filtering non-rainbow pixels between 40 and 42 degrees), and
computing the antisolar angle for each pixel using (4). An example image and
corresponding per-pixel labels can be seen in Figure 6.

Using the per-pixel predictions, our approach is as follows: 1) select the most
probable rainbow pixels (top 5 %, selected empirically to filter out false pos-
itives), 2) randomly sample three points and use the optimization from Sec-
tion 3.2, assuming the estimated antisolar angle is correct, to get an estimate
of sun direction and focal length, 3) use our image-based refinement technique
from Section 3.3. We repeat this process multiple times and use the configuration
with lowest error as the final calibration.

4 Applications

We use the geometric properties and algorithms we derived for several applica-
tions.

4.1 Calibration of Internet Imagery

We demonstrate the effectiveness of our calibration approaches on a dataset of 90
images we collected from a popular photo sharing site (http://flickr.com). We
only include images from the iPhone 4, a popular camera phone, because it has a
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fixed focal length and has been used to capture and share many rainbow images.
This is a realistic and challenging dataset containing many small, often faint
rainbows, some barely visible (see Figure 7 for sample images). The dataset,
including the results of our methods on all images, is freely available online
(http://cs.uky.edu/~scott/projects/rainbows).
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Fig. 7: (left) Example images from our rainbow image dataset. (right) The distri-
bution of errors for various calibration approaches. The method based on pixel
error produces fewer outliers. The blue curve shows the result of applying our
refinement technique to the output of the pixel error method.

For each image, we manually click points along different color bands and
estimate the calibration parameters using the optimization methods from Sec-
tion 3.2. On average, we annotate 20 points per image (max 39, min 8, 0 = 8.4)
on two color bands. See Figure 7 for the results of this experiment, shown in
terms of field of view for easier interpretation. We find that the absolute angular
error approach gives more accurate results on some images, but the absolute
pixel error is more robust. The figure also shows that our image-based refine-
ment technique (Section 3.3), when applied on the output of the absolute pixel
error method, improves the calibration estimates relative to calibration based
on manual clicks alone. Our fully automatic method (Section 3.4), trained using
approximately 300 other rainbow images from Flickr (20 trees, 32 iterations),
performs better than the fully manual approaches on some images, but fails
dramatically on others. This highlights the difficulty of automatically labeling
rainbow pixels in our challenging dataset.

Our implementation, running on a standard desktop PC, takes on average
less than a second to perform manual calibration, and 30 seconds for refinement,
for a single image.
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4.2 Data-Driven Rainbow Appearance Modeling

We use the images in our dataset to construct a rainbow appearance model
for the primary rainbow. To our knowledge this is the first attempt to build
such a model in a data-driven manner. Previous work has focused on physics-
based models [26]. These approaches, while very successful at rendering extreme
rainbows, fail to capture the relative distribution of typical rainbow appearance.
We show that a data-driven approach can capture this typical appearance, and,
as we show in the following section, can be used to exaggerate or diminish the
appearance of real rainbows.

We build upon our approach, described in Section 3.3, for estimating the
expected rainbow appearance from color changes relative to the antisolar point.
Instead of an average image, we estimate a linear basis which captures typical
rainbow signature variation. To build this model, we collect rainbow signatures,
g—g, from all images in our dataset. We use the result of our automatic refinement
method to estimate the antisolar point and focal length. In Figure 8, we show
the marginal distribution of radial gradients, P(%—SW), by aggregating radial
color derivatives for all radial lines that contain rainbows (manually filtered).
This shows the characteristic color changes of a rainbow overlaid with rainbow
signatures from two different images. From these we can see that individual
rainbows vary in saturation and intensity and that these changes covary from
angle to angle. This motivates the use of a Probabilistic Principal Component
Analysis (PPCA) model [31] to describe rainbow signatures.

For all images in our dataset, we compute the rainbow signature from our
refined calibration estimates, vectorize these signatures and aggregate them into
a matrix. From this, we estimate the PPCA decomposition of rainbow appear-
ance. In Figure 8, we show ten rainbow images randomly sampled from our
PPCA model. In the following section we show one possible use of this rainbow
appearance model.

4.3 Rainbow Editing

We use a gradient-domain editing approach [24], coupled with our PPCA-based
rainbow color model, to exaggerate or diminish rainbows in images. We first
calibrate the camera then compute the radial and tangential image gradients.
For each radial line, we estimate the parameters of the PPCA model that best
describe the color derivatives and then subtract these changes from the radial
derivatives. We then solve the Poisson equations to find the image that best
fits the updated derivatives. Figure 9 shows several examples of rainbows we
attempted to edit, including one failure case due to poor initial calibration.

4.4 Video Geolocalization

We show how to estimate the geolocation of a static camera from a video con-
taining a rainbow. We build on an existing algorithm [25] that computes sun
position (zenith/azimuth angle) for a given time and location. Our approach is
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Fig. 8: (top) Conditional color derivative distributions for the L*a*b* color space.
(bottom, left) Two rainbow images with rainbow signatures that correspond to
two lines in the distribution plots. The green (red) line is the rainbow signature
of the left (right) image. (bottom, right) Ten images randomly sampled from our
empirical rainbow appearance model overlaid on a blue background image.
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Fig.9: Rainbow image manipulation. Several examples of editing an original im-
age (left), by exaggerating (middle) and diminishing (right) the rainbow using
our empirical rainbow appearance model. Poor results occur when we have sub-
optimal initial calibration (bottom).
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similar to previous work on sun-based localization [5] which is founded upon the
relationship between time, sun position and geolocation. Unlike this previous
work, our method does not require extensive pre-calibration of the camera. All
we need for our method is the image of a rainbow, the capture time of the video,
and an estimate of the horizon line.

Given an image, we use our calibration methods to solve for the focal length,
f, and TAP, s. We then compute the sun direction, S = —R;j}K—ls, where
K = diag([f, f,1]) and Rg, is a rotation matrix that encapsulates camera roll
and tilt and is computed directly from the horizon line. Solving for this rotation
allows us to compute the solar zenith angle of S relative to the world coordinate
system. To estimate the geolocation, we first compute the true sun position for
the image capture time [25] on a dense grid of possible geolocations. For each
location, we assign a score that reflects how close the image-based estimate of
the sun zenith angle, z.4, is to the true zenith angle, z, for that location. We use
the absolute difference between these values, |z — zqst|, as our score. We average
this score across multiple images from the same video and choose the geolocation
with the minimum value.

In Figure 10, we show several localization score maps generated from a time-
lapse video, captured in the Czech Republic, that contains both a rainbow and
the moon (which provides constraints on geolocation that are very similar to
the sun). In the video, the rainbow is visible for only fourteen minutes and the
moon for thirty. We sample four frames of each, using our automatic refinement
technique to estimate the focal length and antisolar point, and hand labeling
the centroid of the moon and the horizon line. Because the moon is in the frame
for longer, it provides stronger constraints on location. But, it requires the focal
length we estimated from the rainbow to interpret. By combining the localization
scores from all frames for both cues, we get a final localization result that clearly
highlights the true camera location. Geolocating outdoor cameras is challenging
and often requires combining multiple cues. To our knowledge, this is the first
work on using rainbows (and potentially other solar-refractive phenomena) for
camera localization.

5 Conclusion

We derive constraints and demonstrate methods that allow rainbows to be
used for camera geolocation, calibration, and rainbow-specific image editing.
These methods exploit the strong geometric cues that rainbows offer through
the physics of their formation. This adds to a growing body of work termed
“lucky imaging” that exploits occasional and transient atmospheric effects to
simplify various image analysis challenges.
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Fig.10: Localization result from a time-lapse video containing a rainbow and
the moon. (a-d) Examples of single frame localization scores. (e) The final lo-
calization result obtained by combining scores from individual frames. (Video
courtesy of Martin Setvak)
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