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Abstract

We present a new point distribution model capable of
modeling joint subluxation (shifting) in rheumatoid arthri-
tis (RA) patients and an approach to fitting this model to
posteroanterior view hand radiographs. We formulate this
shape fitting problem as inference in a conditional ran-
dom field. This model combines potential functions that fo-
cus on specific anatomical structures and a learned shape
prior. We evaluate our approach on two datasets: one con-
taining relatively healthy hands and one containing hands
of rheumatoid arthritis patients. We provide an empirical
analysis of the relative value of different potential functions.
We also show how to use the fitted hand skeleton to initial-
ize a process for automatically estimating bone contours,
which is a challenging, but important, problem in RA dis-
ease progression assessment.

1. Introduction
Imaging of the hand is routinely done to diagnose and

asses the severity of diseases that alter the normal appear-
ance of the musculoskeletal system. One such disease is
rheumatoid arthritis (RA), a chronic systemic inflammatory
autoimmune disease that primarily affects joints. The symp-
toms are pain, swelling and the loss of the joint function due
to inflammatory processes. The underlying cause of RA is
multifactorial [16, 8] including genetic susceptibilities, nu-
trition, lack of exercise and environmental factors. Joint
inflammation caused by RA leads to over-vascularization,
proliferation and synovial scar formation. The synovial pro-
liferation is most marked at the margins of the joints, where
the ticht space leads to bone erosions [3]. The inflammatory
processes do not spare the ligaments, tendons and muscles,
which leads to weakness, laxity and deformity.

We propose a novel method to automatically fit a skele-
ton model to a hand radiograph. Our approach builds on
a previous model by Fernändez et al. [17], who proposed
a point distribution model with landmarks located at joint
centers. To support the types of deformation common in

RA, we relax this model by adding additional landmark
points. Instead of a single point per joint, we have one lo-
cated on each of the cortical articular surfaces of adjacent
bones in the joint. This modification allows us to model
subluxation (dislocation) of bones and supports our long-
term goal of automatically measuring inter-joint spacing.

We provide a probabilistic formulation of our approach
as a Conditional Random Field (CRF) and show to perform
learning and inference with the model. We use a collection
of potential functions, each tuned to a particular anatomi-
cal feature, such as upper and lower joint surfaces, or bone
orientation. Each of these features makes unique contribu-
tions to our fitting process. We evaluate these features, and
our CRF model, on real data from hands with and without
deformation due to RA. Based on an analysis of the relative
value of different potential functions, we find that the term
that estimates the orientation of the joint makes significant
contributions to rough alignment but other terms, such as
the upper and lower joint potentials, make significant con-
tributions by enabling more precise positioning of landmark
points.

The main contributions of this work are: 1) introducing a
new point-distribution model suitable for deformed hands,
2) a CRF framework for fitting this model to hand radio-
graphs, 3) the definition of a set of potential functions that
focus on specific anatomical structures in the hand, and 4)
the evaluation of the accuracy of the method and the relative
value of various potential functions on two datasets of hand
radiographs.

2. Related Work
In this section, we describe previous work on vision-

based methods for processing and analyzing hand radio-
graphs.

Hand Radiograph Model Fitting Registering a paramet-
ric model to a hand radiograph is a key problem in this do-
main. Fernändez et al. [17] used a landmark-based wire
model (which we extend in this paper) to develop a regis-
tration algorithm that outperforms thin-plate splines (TPS).
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They initialize the wire model through a cascade of image
processing routines based on bone axes. Van de Giessen et
al. [20] developed a method to register CT scans of wrists
by enforcing distances between bone surfaces to remain the
same after registration. Bellerini et al. [2] use snakes opti-
mized as initially proposed by Kass et al. [11] using genetic
algorithms. They encode the parametric snake as polar co-
ordinates centered at the origin which can be placed arbi-
trarily on the image. Xu et al. [21] introduced gradient
vector flows as external forces, which eliminates the need
to know a priori whether the snake will shrink or grow. Our
work extends this line of research by generalizing the con-
strained shape model of Fernändez et al. [17]. This modifi-
cation leads to the need for improved image feature extrac-
tion.

Hand Radiograph Pixel Labeling Numerous ap-
proaches have been proposed for pixel-level labeling of
hand radiographs, we present several recent examples.
Yuksel et al. [22] use a combination of feature classification
and morphological operations to segment bone tissue
from hand radiographs. Chai et al. [4] use the gray level
co-occurrence matrix to segment texture and segment bone
tissue from soft tissue. These approaches are similar to
our feature extraction approach, but our features were
developed to directly aid in model fitting, whereas these
were developed for other purposes.

Hand Radiograph Analysis Hand radiographs are used
frequently in medical diagnosis because the hands are
where the pathology is most evident. We introduce sev-
eral common medical uses for hand radiographs, each of
which could benefit from the improved skeletal model fit-
ting method we propose.

Langs et al. [13] presented a combination of active shape
models and active contour models to segment bones and de-
tect erosions on RA patient hand radiographs. Their ap-
proach relies on an initialization based on a local linear
mapping net. We point out that hand radiographs of late
stage RA patients are much more challenging due to severe
subluxation, which result in overlapping bones, and joint
space narrowing which lead to weak edge information, thus
decreasing performance of purely edge-based methods.

In pediatric radiology, skeletal age is an important indi-
cator of a healthy development process. Not only the bone
locations and contours are of interest; bone density mea-
surements aid in the diagnosis of skeletal development. One
of the first complete descriptions of a system for hand ra-
diograph analysis for skeletal age assessment is presented
by Michael et al. [18]. Hue et al. [10] proposed an algo-
rithm to segment hand bones on hand radiographs of chil-
dren. Their approach relies on an oversegmentation using
the watershed algorithm and region of interest extraction

and merging algorithms to segment soft tissue and back-
ground from noise. Sotoca et al. [19] proposed a semi-
automatic approach where a user places the template at or
near the center of a bone and the contour is approximated
using active shape models (ASM).

Radiologists rely on expertise to assign a bone matu-
rity score relative to age and gender. The most commonly
used method to perform this evaluation is the atlas match-
ing method by Greulich and Pyle (GP method) [2]. This is
a time consuming process and correct assessment is highly
dependent on the radiologist’s experience and expertise,
thus automated methods have been proposed. Giordano et
al.[9] developed a method to predict bone age using a com-
bination of filtering and Gradient Vector Flow Snakes with
accuracy of 90%. Bayesian networks have been used by
Mahmoodi et al. [14, 15]. Fuzzy systems have been used
for skeletal age assessment by Aja-Fernändez et al. [1].

State-of-the-art bone segmentation and joint space width
measurement approaches rely on landmark detection algo-
rithms, usually based on a cascade of image processing
techniques. This first step of landmark detection leads to
most failures in existing algorithms. Our work fills that gap
by accurately computing key anatomical points. roughly
centered, currently done manually. Recent work by Davis
et al. [7] provides encouraging results on automating this
process.

3. Problem Definition
Given a roughly centered hand radiograph, our goal is to

estimate landmarks point locations on the edge of cortical
articular surfaces along the main axis of long bones. In this
section, we formally define our shape model and identify
key challenges in solving this problem.

3.1. Shape Model

We represent a shape, s, by a set of n landmark point
locations s = (x1, x2, x3, ..., xn, y1, y2, y3, ..., yn)T . The
choice of landmarks depends on the object of interest and
the application, but for hand radiographs they are usually
chosen as joint centers and fingertips. A recent example is
the work of Fernändez et al. [17] where a shape model is
used as an initialization step to an image registration algo-
rithm. We chose to generalize their representation by hav-
ing two landmarks per joint, one on each side of the joint
on the cortical articular surface of the bone, collinear with
the bone’s main axis, (i.e., the tips of long bones). Figure 1
shows a visualization of this model. This relaxation allows
us to model the subluxation deformities that are common in
moderate to late stage rheumatoid arthritis patients.

3.2. Key Challenges

Automated methods for radiograph analysis rely on con-
sistent alignment and appearance, which rarely happens in
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Figure 1. Our proposed shape model: each segment corresponds
to a bone (B1... 19). Individual points are indexed as proximal
s{1...19}p and distal s{1...19}d.

practice. In this work, we focus on solving the alignment
problem by fitting an initial hand model to the radiograph.
We describe several important challenges in solving this fit-
ting problem.

Despite attempts to control hand position using clinical
protocols, hand radiographs of healthy patients show signif-
icant variations in pose. In addition to RA deformities, such
as joint fusion, sclerosis and subluxation, other diseases
including osteoarthritis may be present further increasing
variability in pose. For example, RA damage and pain can
prevent patients from flattening their hands on the imaging
surface. A solution to the hand model fitting problem must
be able to cope with significant changes in pose and joint
deformities.

The appearance of bones also varies significantly from
patient to patient. This is especially true in RA patients be-
cause the disease affects the density and shape of individ-
ual bones. Many previous approaches to the hand model
fitting problem focus on specific anatomical features for
alignment, but this leads to brittle solutions. Therefore, an
approach that combines image information from multiple
anatomical features is needed. Our work addresses both of
these concerns in a consistent, and adaptable probabilistic
formulation.

4. Approach
We propose a CRF-based model that combines a shape

prior with appearance terms that identify various anatomi-
cal structures. The shape prior is based on the distance from

the subspace spanned by a Point Distribution Model (PDM)
and the appearance is defined as a collection of likelihood
terms that depend on local feature detectors. We use a local
optimization strategy to jointly maximize feature responses
at landmark locations by minimizing an energy function.
Minimizing energy in this context is equivalent to maxi-
mizing the posterior distribution over the correct location
of landmarks given an image.

Our proposed CRF has the following form:

P (s|I, θ) =
1

Z
exp{

∑
i

{
∑
j

Ψj(sip , sid , θ)}+ (1)

+
∑
k

φk(si, θ) + ζ(s, θ)}

where i is an index over model segments, j and k index
our pairwise and unary appearance terms, Z is the partition
function, Ψ and φ are pairwise and unary appearance terms,
ζ is a shape model prior and θ is a weight vector we use to
balance the various terms.

4.1. Potential Functions

The data terms in our model are based on a collection of
discriminative features that we combine into a set of poten-
tial functions.

Discriminative Features The success of the shape fitting
process is heavily dependent on a set of features that are
highly discriminative. Recently, Cootes et al. [5] showed
how regression voting using random forests in the con-
strained local model (CLM) framework outperforms exist-
ing methods on shape fitting. Our approach extends Con-
strained Local Models (CLM) [6], by formulating the shape
fitting problem in a general CRF framework.

We classify each pixel in an image independently using
a randomized decision forest (RDF) classifier and use dense
SIFT features as input. We train 4 RDF classifiers, one
for joint centers (the midpoint between adjacent bones con-
nected by joints), two for cortical articular surface points,
one for proximal and one for distal, and a bone tissue clas-
sifier.

For a new image, we compute DSIFT descriptors and
run them through our RDF classifiers. The output is a like-
lihood that represents class membership of each pixel. We
note that this process implies independence in pixel mem-
berships (e.g., we could potentially have a pixel be labeled
as both bone and cortical surface). Let the classifier re-
sponse for joints be fj(si) where si is a landmark point
with a corresponding image location. Similarly, we define
fpc(si) and fdc(si) for proximal and distal cortical articular
surface pixels. Finally, let fb(si) be the classifier response
for bone tissue. Examples of RDF classifiers outputs can be
seen in Figure 3.



We then apply a thresholding operation on fj and fb to
compute binary regions of high probability bfj and bfb. Us-
ing the thresholded responses, we apply distance transfor-
mations, and combine them with values inside the regions
to compute dfj(si) and dfb(si). The distance transforma-
tion returns 1 on the region borders and 0 inside. The lo-
cations inside the regions are filled with 1 − fj and 1 − fb
respectively. This approach increases alignment precision
by providing extra information about the most probable lo-
cation of anatomical interest points. Examples can be seen
in Figure 4.

In the next section we show how we convert these low-
level image features into potential functions in our CRF
model.

Pairwise potentials The first pairwise potential encodes
the compatibility between a segment in our shape model
and evidence of bone tissue:

Ψ1(sip , sid) = θ1
1

n

t∑
n=1

dfb(pxn
, pyn) (2)

where the summation is over points p sampled along a seg-
ment. This function takes as input the distance transforma-
tion dfb and is low when a segment is placed over a bone.

The bone evidence from the image can be further ex-
ploited by considering segment orientation extracted from
the thresholded bone tissue classifier connected compo-
nents. We define the following potential:

Ψ2(sip , sid) = θ2 (tan−1(sip − sid)− fo(si))2 (3)

In the above equation, fo is a function that returns an angle
at an image location computed via a weighted averaging
of angles of the connected components with respect to the
horizontal image axis. Intuitively, if a segment si is placed
perpendicular to the major axis of a connected component,
the potential will be at its maximum. In Figure 4 we show
fo for an image.

We now define a pairwise potential that encodes a prior
over adjacent cortical articular surfaces in a joint:

Ψ3(sid , si+1p) = θ3(−log N (0,Σ)) (4)

where N is a Gaussian with full rank covariance Σ com-
puted from the training set. This term constrains joint
spaces to be at reasonable distances in order to avoid local
minima during optimization.

Unary potentials We define three terms that encourage
the landmark points to be near appropriate anatomical fea-
tures of the joint. The motivation for our first unary poten-
tial is that all points on the model should be in areas of high

Figure 2. Left: in red, segments span the major axis of connected
components in a binary image (bfb) used for initialization. Right:
in green, the top 3 models from the training set with the lowest
ICP registration error.

Figure 3. Left: joint center pixel probabilities. Middle: color
coded probabilities for distal (red channel) and proximal (blue
channel) cortical surface pixels. Right: bone pixel probabilities.

Figure 4. Left and middle: Distance transformations dfj(si) and
dfb(si) of thresholded classifier responses. Right: Orientation
term fo.

probability indicated by our joint feature, fj . To further pe-
nalize points from being far from a joint, and to improve op-
timization performance, we use dfj , which is an augmented
version of fj . This unary potential is defined as follows:

φ3(si) = θ6 dfj(si) (5)

The second two unary potential functions encourage land-
mark points to align to the joint contours. These potentials
are defined as follows:

φ1(sip) = θ4 fpc(sip) (6)

and
φ2(sid) = θ5 fdc(sid). (7)



For this domain using classifiers, fdc and fpc, instead of a
generic edge detector is critical because it allows the model
to distinguish between the true bone contours used for diag-
nosis and analysis and apparent edges caused by the radio-
graphic projection of other bone structures.

We find that in practice these terms complement each
other. The first is very important for rough initial align-
ments, while the second two are critical for the precise
alignments. See the evaluation section for details.

4.2. Shape Model Prior

The shape prior term ζ(s, θ) is used to penalize unlikely
shapes. Using Probabilistic Principal Component Analysis
(PPCA), we seek to relate shape s to a k-dimensional vector
x that is normally distributed with zero mean and covari-
ance I(k):

sT = WxT + s̄+ ε (8)

where W is the matrix of principal components and s̄ is the
average shape. ε is the model noise component, assumed to
be normally distributed ε ∼ N (0, σ2I).

Under this model, s is normally distributed:

P (s) = N (s̄,WWT + σ2I(k)) (9)

so our shape prior is a weighted negative log likelihood of
P (s):

ζ(s, θ) = θ7(−log P (s)) (10)

W and σ2 are estimated using an Expectation-
Maximization algorithm from a training set of hand
shapes extracted from hand radiographs.

4.3. Shape Inference

We now describe our strategy for estimating the optimal
shape model for a given hand radiograph. We first compute
a set of initial models, then use local optimization for each
and select the best.

We use thresholded bone tissue classifier, bfb, for initial-
ization by computing the connected components statistics
in the binary image. We model each component as an el-
lipse and compute its centroid, major axis, orientation and
length. The line segments spanning the major axis of the
connected components (see Figure 2) form the basis of our
initialization scheme. We use a variation of the Iterative
Closest Point algorithm to register samples from our train-
ing set to the segments extracted from the binary bone tissue
classifier. The ICP registration error is then used to select
the 3 best shapes that are used as starting points for our local
optimization.

Our local shape objective function is the posterior prob-
ability of a shape, s, given image data, or equivalently the
log likelihood of our CRF model (1), which is defined as

follows:

E(ŝ, θ, I) = arg min
s

∑
i

{
∑
j

Ψj(sip , sid)} (11)

+
∑
k

φk(si) + ζ(s, θ).

To minimize (11) we use coordinate descent with step sizes
chosen by an independent local search in each dimension.

4.4. Estimating CRF Weights

We use a supervised learning approach to estimate the
model parameters θ. The partition function Z is NP-hard
to compute [12]. We overcome the difficulty of comput-
ing Z in learning the model parameters by using Pseudo-
Likelihood learning, where a uniform prior over model
parameters is assumed by setting τ = ∞ in P (θ|τ) =
N (θ, 0, τ2I) where I is the identity matrix. We find the
optimal parameters θ by minimizing the difference between
our estimated shapes and ground truth shapes over a set of
training images:

θ̂ML = arg min
θ

∑
i

∥∥∥∥arg min
s

E(s, θ, Ii)− sGTi
∥∥∥∥2
2

. (12)

The above minimization is non-convex since we allow s to
vary during optimization. We use the simplex method with
random restarts to compute model parameters, θ. In the fol-
lowing section we evaluate the model parameters and show
results from inference.

5. Evaluation
Datasets We evaluate our method on two datasets with
posterior-anterior view hand radiographs: the Digital Hand
Atlas Database1 and a set of 43 radiographs of RA patients
from the University of Kentucky Department of Radiology.
The second dataset is of a hands in a range of disease stages,
from minimal to extreme deformation. For evaluation pur-
poses, we manually determined landmark locations for each
image in both datasets. Since radiograph contrast varies due
to calibration parameters and noise, we truncate the upper
20% of the intensity histogram.

Quantitative Evaluation We used a set of 20 images
from both datasets to train our discriminative classifiers and
estimate our remaining model parameters. The remaining
images were used for testing and validation.

We evaluate the model by computing the sum of absolute
differences between ground truth shapes and results from
inference. The model errors for both datasets can be seen in
Figure 7 and 6. For the Hand Atlas set, the average per point

1http://www.ipilab.org/BAAweb/



Figure 5. Results on a representative subset of test images. Top row: healthy radiographs from the Hand Atlas Database. Bottom row:
rheumatoid arthritis set.

error was 2.72 pixels, while for the RA dataset it was 2.85
pixels. A comparison to the state of the art is difficult due
to our model landmark selection and RA deformity sever-
ity. We divide the test set into early (16 images), moderate
(11 images) late stage radiographs (11 images), the average
per point errors (measured in distance from ground truth, in
pixels) are as follows: 2.30, 2.24, and 4.56.

To help understand the failure modes of our approach,
we further investigate two radiographs with poor shape es-
timates. These correspond to images 23 and 27 in Figure 7.
We find that by inspecting the optimal fit for both images,
shown in Figure 8, that they are both from patients with late-
stage RA and have severe deformities and subluxation. In
such cases, assistance from a radiologist will be required.

Term Contributions To provide more insight into the
model, we estimate the amount each potential function con-
tributes to reducing errors in the RA dataset. We split the
dataset into two groups, a training set of size 20 and a test-
ing set of size 12. We use the training dataset to estimate the
optimal potential function weights, θ̂, by minimizing (12),
as described above, for the full model. Then, for each of
the seven potential function, we solve for the optimal set of
weights for the model without that potential function, leav-
ing one out. This results in a set of eight different models.
For each model, we infer the shape in each image in the test-
ing dataset and sum the absolute pixel error with respect to
the ground-truth shape to obtain an error measure. Table 1

Table 1. Percent increase of error for each term when omitted from
the model.

Term Ψ1 Ψ2 Ψ3 φ1 φ2 φ3 ζ
% Error
increase 39.14 1.42 1.87 2.19 0.09 10.56 0.27

shows the ratio of the error of a model without the potential
function to the error for the full model. Intuitively, an im-
portant term will result in a model with significantly higher
error if it is removed. We find that there are two dominant
terms: Ψ1 and φ3 that correspond to bone and joint evi-
dence from the feature set. These terms are clearly the most
important in gross alignment, however the other terms each
make a contribution to reducing errors in the full model.

Example Applications: Initialization for Estimating
Bone Contours The weakness of most state-of-the-art ap-
proaches for identifying bone contours is the initialization
step. As an example application, we propose to fit an ac-
tive shape model (ASM) to the cortical articular surfaces
for each finger joint. This is challenging because ASM
models must be initialized very close to the optimal loca-
tion or they will fall into non-optimal local minima. We use
our proposed approach to estimate a model skeleton and use
the landmark points and bone segments to align the initial
ASM model for each joint. We optimize the ASM shape
parameters, using an off-the-shelf software library, and ob-
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Figure 6. Hand Atlas Dataset model errors computed as
sum of absolute differences from ground truth.
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Figure 7. Rheumatoid Arthritis Dataset model errors computed as
sum of absolute differences from ground truth.

Figure 8. Failures that correspond to high errors from Figure 6
and 7.

tain the results seen in Figure 9. This demonstrates that our
estimated skeleton models are sufficiently accurate to pro-

vide initial conditions for ASM models of joint contours. In
combination, such an approach could be used to automati-
cally estimate the joint space width, an important metric for
RA progression.

6. Conclusion

We introduced a new method for fitting wireframe-hand
models to radiographs. A key innovation in our approach
is in fitting a relaxed shape model, with four degrees of
freedom at each joint, that is capable of representing the
dramatic subluxations present in patients with rheumatoid
arthritis (RA). Fitting this model effectively is more chal-
lenging than standard models, which only have two degrees
of freedom at each joint. We show that our method, which
combine low-level discriminative features in a conditional
random field framework, is capable of fitting this relaxed
model on healthy hands as well as those deformed by RA.
We provide quantitative results that highlight which features
are most important and show an application of our method
to fitting bone contours, which is critical in assessing RA
damage.
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