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Abstract—Rheumatoid arthritis (RA) is an autoimmune disease
whose common manifestation involves the slow destruction of
joint tissue, damage that is visible in a radiograph. Over time,
this damage causes pain and loss of functioning which depends,
to some extent, on the spatial deformation induced by the joint
damage. Building an accurate model of the current deformation
and predicting potential future deformations is an important
component of treatment planning. Unfortunately, this is currently
a time consuming and labor intensive manual process.

To address this problem, we propose a fully automated
approach for fitting a shape model to the long bones of the
hand from a single radiograph. Critically, our shape model allows
sufficient flexibility to be useful for patients in various stages of
RA. Our approach uses a deep convolutional neural network to
extract low-level features and a conditional random field (CRF)
to support shape inference. Our approach is significantly more
accurate than previous work that used hand-engineered features.
We demonstrate this on two large datasets of hand radiographs
and highlight the importance of the low-level features, the relative
contribution of different potential functions in the CRF, and the
accuracy of the final shape estimates. Our approach is nearly as
accurate as a trained radiologist and, because it only requires
a few seconds per radiograph, can be applied to large datasets
to enable better modeling of disease progression. We will release
our code and trained models upon acceptance of this paper.

Index Terms—rheumatoid arthritis, radiograph, conditional
random field, convolutional neural network

I. INTRODUCTION

Rheumatoid Arthritis (RA) is an autoimmune disease, with
no known cure, that primarily affects synovial joints, espe-
cially those of the hands. The disease typically starts with
inflammation and swelling, followed by the mutilation of joints
through healthy tissue loss and scar tissue formation. The
causes of the disease are multiple; genetic susceptibilities, lack
of exercise, and environmental factors are considered to play
a role in the onset and progression of the disease.

Imaging of the hand is a routine procedure used by radi-
ologists to assess the extent of the damage and to estimate
the stage of disease progression. Disease staging can be a
complex process, a function of key anatomical features and
changes from a healthy baseline. Some of those features
include the inter-joint spaces that tend to get smaller as the
disease progresses. Recently, Pfeil et al. [20] have investigated
using automated estimation of joint spaces as a predictor of RA
disease progression with success. This motivates further work
in this area, since different combination of medications may be
more effective at earlier stages in the disease progression [22].

  

CNN CRF

Fig. 1. Our radiograph shape fitting pipeline. Input image (left) is directly
processed by a set of deep convolutional neural networks to produce feature
maps (middle) that correspond to key anatomical features. The final shape
(right) is inferred using a conditional random field (CRF).

Automated joint space estimation is challenging for several
reasons. First, the process for capturing radiographs, which
are typically in the posteroanterior (PA) view, results in sig-
nificant variability in hand placement and joint configuration.
Such variability is acceptable for radiologists, but means
that automated systems must cope with these differences.
Second, appearance variations in radiographs appear due to
inconsistent image acquisition parameters from calibration,
digitization artifacts from film radiographs (scanner calibra-
tion), and anatomical differences. Appearance variations due to
anatomy can be classified into two categories: differences from
individual to individual and morphological differences due
to disease (e.g., rheumatoid arthritis, osteoporosis), including
inflammation and surgery.

We propose a fully automatic approach to estimating the
configuration of the long bones of the hand from a radiograph.
We adopt a previously introduced shape model [19] and
combine bottom-up supervised feature extraction with a top-
down shape inference process in the form of a conditional
random field (CRF). We propose several novel improvements
to the previous work on this problem, including improved low-
level features and better initialization for the CRF optimiza-
tion. These changes substantially increase the accuracy and
robustness without increasing the run time during inference.

We make the following key contributions: 1) an improved
low-level feature extraction process that uses deep fully con-
volutional neural networks (CNNs), 2) an improved CRF
initialization strategy, and 3) an evaluation on a large datasets
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Fig. 2. Our shape model: each segment corresponds to a bone (B1... 19).
Individual points are indexed as proximal s{1...19}p and distal s{1...19}d.

that demonstrates the benefit of our improvements.

II. RELATED WORK

Hand radiograph analysis has been investigated in the past
and continues to receive attention from the computer vision
and medical imaging research communities. We group related
work into three categories: parametric shape model fitting to
radiographs (most related to this work), hand radiograph pixel-
level labeling algorithms and general radiograph analysis, a
combination of parametric and non-parametric models and
pixel-level operations. Our problem formulation is similar to
face landmark localization and human pose estimation [4],
[11], [24]. Recently, significant progress has been made in
the above mentioned domains using end-to-end localization
using CNNs. This is made possible by extremely large training
sets, both real and synthetic. Our proposed method relies on
significantly less training data, and thus a direct comparison
is not made in this work.

Registration of hand bones has been explored using multiple
imaging modalities. Simple radiographs are the least expensive
modality and typically the first diagnostic imaging order by
rheumatologists, for diagnosis as well as disease tracking [6],
[17]. The carpal bones have overlap in 2D views and present
significant challenges for vision based algorithms, but have
been used with moderate success [3], [25]. Volumetric modal-
ities such as computed tomography (CT or CAT) and magnetic
resonance imaging (MRI) have also been used with registration
algorithms, for both parametric and non-parametric model
fitting. Chen et al. [3] propose a semantic segmentation and

registration pipeline for the carpal bones from volumetric CT
data using Grow Cut [25]. Mihail et al. [19] approximate
these functions using dense SIFT [16] features and random
decision forest (RDF) [5] classifiers. Since the relative size
of hands (and bones) are similar in all images, the SIFT
features at a fixed scale and orientation performed well with
RDF classifiers. Our approach differs from others by not using
manually engineered features. Instead, the features we use
are learned using deep fully convolutional networks. Many
fully convolutional network models have been proposed in the
recent past, however, for biomedical image segmentation U-
Net [21] is most similar to our design.

Parametric models for shape inference have been used in
the past on hand radiographs. These algorithms typically rely
on a set of image pre-processing or feature extraction steps for
model initialization and inference. This work is closely related
to that of Fernández et al. [18], who use a wire model whose
wires correspond to the major axis of the hand’s metacarpal
and phalanges (long bones in the hand). Their method registers
this wire model to previously unseen radiographs using a
variation of thin plate splines (TPS) algorithm. However such
representations are not well suited to modeling the joint
displacements in RA patients.

Pediatric skeletal maturity estimates are used to diagnose
growth disorders, timing of surgical interventions, and en-
docrine disorders. This estimate is typically done on hand
radiographs using Greulich and Pyle atlas (G&P) [9]. Bunch
et al. [2] integrated automated bone age assessment methods
to increase clinician reporting quality and speed. Larson et
al. [15] directly use a deep learning architecture to esti-
mate skeletal maturity from pediatric radiographs. Guraskin
et al. [10] used hand radiographs to pediatric skeletal maturity
using a cascade of morphological operations that result in
six features used as input to classification algorithms (support
vector machines, k-nearest neighbors, decision trees, and naı̈ve
Bayes).

In contrast to methods that directly estimate a property from
hand radiographs, our method provides very accurate locations
of the bones that are typically used in higher level analyses.

III. PROBLEM FORMULATION

Given a roughly centered radiograph in posteroanterior
(PA) view, our goal is to estimate the landmark points s =
{s1, ..., s19} that correspond to the epiphyses (end parts of
long bones) of the metacarpal and phalanges along their main
axis, as seen in Figure 2.

We approach the shape fitting problem by formulating the
problem probabilistically. We define the best shape s for an
image I , as the shape s that maximizes P (s|I). We look for
a factorization of the conditional P (s|I) that is both tractable
to approximate and captures conditional dependencies (e.g.,
shape points are not in the middle of a long bone). To
accomplish this, we adopt a conditional random field (CRF)
to represent the distribution. We integrate a set of low-level



features, which are described below, in the potential functions
of a CRF. The CRF has the following form:

P (s|I, θ) =
1

Z
exp{

∑
i

{
∑
j

Ψj(sip , sid , θ)+ (1)

+
∑
k

φk(si, θ)}+ ζ(s, θ)}

where i is an index over model segments, j and k index our
binary and unary appearance terms, Z is the partition function,
Ψ and φ are, respectively, binary and unary appearance terms,
ζ is a shape model prior and θ is a weight vector we use
to balance the various terms. In the following subsections, we
define the potential functions, irrespective of the low-level fea-
tures, discussed in detail in Section IV-A. In the remainder of
this paper, we describe our approach to solving this problem,
present evaluation results, and discuss the implications of this
work.

IV. APPROACH

Our pipeline consists of two stages: low-level feature ex-
traction, and a CRF whose maximum a posteriori (MAP)
inference yields the optimal shape for a given image. In this
section, we describe the various components of our approach
for estimating the shape s for a given hand radiograph I ,
including: a deep convolutional neural network for extracting
features from the imagery (Section IV-A); our process for
converting these features into potential functions for our
CRF (Section IV-B); our shape prior (Section IV-C); and
the inference process, including shape initialization and CRF
optimization (Section V).

A. Convnet for hand segmentation

For our low-level feature extraction process, we first define
the following functions of image locations (p is a point on an
image):

1) fj(p): a response function where the response is highest
over epiphyseal surfaces of long bones aligned with their
main axes,

2) fpc(p): a response function with maximal activation over
proximal (closest to the center of the body) epiphyseal
surfaces,

3) fdc(p): same as fpc but with maximal responses at the
distal (farthest from the center of the body) epiphyseal
surfaces,

4) fbc1(p): a response function with maximal responses
over the main axes of a subset of the long bones
(metacarpals and middle phalanges), and

5) fbc2(p): a response function with maximal responses
over the main axes of long bones (proximal and distal
phalanges).

In the remainder of this section, we describe how we compute
these functions from image data.

We formulate low-level feature extraction as a semantic seg-
mentation problem. Neural networks have seen a tremendous
amount of attention in the ML community over the last decade

due to significant improvements in optimization algorithms
and a better understanding of gradient and data propagation
through the networks [12], [14], [23]. This formulation allows
us to use existing knowledge from the semantic segmentation
literature.

The biologically meaningful semantic classes we need are
the joints and bones. Joint tissue is further divided into joint
spaces, proximal and distal cortical surfaces. We group bones
into two groups: 1) metacarpals and middle phalanges and
2) proximal and distal phalanges. Using this taxonomy, we
propose to perform semantic segmentation using a novel fully
convolutional network architecture.

Given an image I , and semantic label set L = {l1, l2, ..., lk},
a semantic segmentation algorithm will assign one of k labels
to each pixel in I . Often, the output of such algorithms is
a distribution over the labels, and the label with the highest
likelihood is chosen. If there are two classes (e.g., background
and bone tissue) |L| = 2, then our previously defined response
functions directly correspond to a pixel’s segmentation like-
lihood. We now discuss our proposed convolutional network
architecture.

Our network is designed using an encoder/decoder architec-
ture. The encoder learns a low-dimensional representation of
the input image. The decoder upsamples this low-dimensional
representation to the original resolution, but whose content is
semantically meaningful. This approach is similar to that of
Badrinarayanan et al. [1] and Ronneberger et al. [21].

We are interested in 4 semantic classes: long bone tissue
along its main axis, joint tissue (between long bones), proximal
epiphyseal tissue (end of the bone nearest the body) and distal
epiphyseal tissue (end of the bone farthest from the body).

Our encoder stage consists of a set of convolutional layers,
batch normalization, and maxpool layers. The encoder stage
ends at a bottleneck, where the network learns low resolution
representations of the image. The encoder is composed of 5
convolutional layers (convolution, batch normalization, and
maxpool) with 16 feature maps each. Each downsampling
layer in the encoder has an upsampling pair layer in the
decoder stage.

The decoder stage begins at the bottleneck, consists of
upsampling layers, followed at last by a softmax classifier
that makes the final pixel-wise semantic label prediction. The
softmax layer has the same resolution as the input image.
The upsampling layers use indices from corresponding max-
pool layers in the encoder stage. Each convolutional layer
is followed by a batch normalization layer and a rectified
linear activation (ReLU) layer. In Table I we summarize the
network’s convolutional layer hyperparameters during training.

B. CRF Potential Functions

The low-level features are combined in various ways to
construct a set of binary and unary potential functions that
our CRF optimization process uses to fit the final shape.

a) Unary potential functions: The unary potential func-
tions encode the compatibility between individual shape
points sip (proximal), sid (distal) and the image, where i ∈



TABLE I
OUR NETWORK ARCHITECTURE. b IS THE BATCH SIZE AND c IS THE

NUMBER OF SEMANTIC SEGMENTATION CLASSES.

Layer Shape Kernel
conv0 b× 16× 600× 460 7× 7
pool0 b× 16× 300× 230 3× 3
conv1 b× 16× 300× 230 7× 7
pool1 b× 16× 150× 115 3× 3
conv2 b× 16× 150× 115 7× 7
pool2 b× 16× 75× 57 3× 3
conv3 b× 16× 75× 57 7× 7
pool3 b× 16× 37× 28 3× 3
conv4 b× 16× 37× 28 7× 7
pool4 b× 16× 18× 14 3× 3
upsample4 b× 16× 37× 28 3× 3
conv4 D b× 16× 37× 28 7× 7
upsample3 b× 16× 75× 57 3× 3
conv3 D b× 16× 75× 57 7× 7
upsample2 b× 16× 150× 115 3× 3
conv2 D b× 16× 150× 115 7× 7
upsample1 b× 16× 300× 230 3× 3
conv1 D b× 16× 300× 230 7× 7
upsample0 b× 16× 600× 460 3× 3
conv0 D b× 16× 600× 460 7× 7
conv 00 b× 16× 600× 460 9× 9
conv classifier b× c× 600× 460 3× 3

{1, . . . , 19}. The first potential function we define encourages
shape points to be on or near cortical surfaces of bones (both
proximally and distally). This function will make use of the
low-level feature function fj through a function dfj(p) (shown
in Figure 3), defined as follows:

dfj =

{
1− fj(p), if fj(p) is non-zero
d(p, fj) otherwise

where d(p, f) is the distance to the closest non-zero point in
f from p.

We can now define the unary potential φ1 as follows:

φ1(si) = θ1dfj(si)

We further define two unary potential functions that encourage
shape points to discriminate between proximal and distal
cortical surfaces. These functions increase the accuracy of the
final fit by encouraging an image-driven joint distance.

Intuitively, the functions φ1 provides a rough alignment with
joints, however, it does not discriminate between the proximal
and distal bone in a joint. We make use of low-level feature
functions fdc and fpc to define augmented distance functions
dfpc and dfdc as follows:

dfpc =

{
1− fpc(p), if fpc(p) is non-zero
d(p, fpc) otherwise

and

dfdc =

{
1− fdc(p), if fdc(p) is non-zero
d(p, fdc) otherwise

where d(p, f) is the same distance function to a non-zero point
p in f as in Equation 2.

Our potential functions are defined as follows:

φ2(sid) = θ2dfdc(sid)

and
φ3(sip) = θ3dfpc(sip)

b) Binary potential functions: The potential functions Ψ1

and Ψ2 encode the compatibility between a shape segment i,
with points ip (proximal), id (distal) and bone tissue using fbc1
and fbc2 (fbcx ). These functions should be at a minima when
any segment s is directly over the main axis of a bone. We
define an augmented distance function dfbx(p) from fbcx(p)
as follows:

dfbx =

{
1− fbcx(p), if fbcx(p) is non-zero
d(p, fbcx) otherwise

If we ensure max(fbcx) ≤ 1 and interpret it as the probability
of pixel’s p membership to the long bone semantic category,
the complement of the collection of non-zero points from fbcx
adds precision to the basins of attraction. Having dfbx defined
(shown in Figure 3), we can now define Ψ1 as follows:

Ψ1(sip , sid) = θ4
1

n

t∑
n=1

dfb1(pxn
, pyn)

and

Ψ2(sip , sid) = θ5
1

n

t∑
n=1

dfb2(pxn
, pyn)

C. Hand Shape Potential Function

The shape prior term ζ(s, θ) is a global term used to
encourage inferred shapes to lie closely in the subspace of
known shapes. We model this knowledge using Probabilistic
Principal Component analysis, where the goal is to relate shape
s to a k-dimensional vector x, where k � dim(s) and x is
of zero mean and unit covariance (I(k)), such that:

sT = WxT + s̄+ ε

where s̄ is the average shape and ε is a normally distributed
model noise component. Using this model, we can assign a
probability to any shape s:

P (s) = N (s̄,WWT + σ2I(k))

and formulate our prior as a weighted negative log likelihood
of P (s):

ζ(s, θ) = θ6(−log(P (s)))

D. Shape Inference

To perform shape inference, we compute the MAP solution
to the CRF by taking the log-likelihood of the model, yielding
an energy function E:

E(ŝ, θ, I) = arg min
s

∑
i

{
∑
j

Ψj(sip , sid , θ) (2)

+
∑
k

φk(si, θ)}+ ζ(s, θ).

As we can see from Equation 2, the optimal shape ŝ for
image I using model parameters θ is obtained when the
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Fig. 3. Visualization of dfb1 , dfb2 , dj , dfpc and dfdc.

energy function is minimized. The minimization problem is
non-convex with many possible local minima, hence, a robust
initialization procedure is important. The initialization routine
computes a shape ŝ from which local search is started.

c) Shape initialization: Our initialization process con-
sists of two stages: rough initialization using a variation of the
Iterative Closest Point (ICP) algorithm and a fine-tuning local
search stage using PCA. For the rough initialization stage,
we compute the connected component statistics (centroid and
major spanning axis) for our bone tissue responses, fbc1 and
fbc2 . These segments are used to register an average hand with
the ICP algorithm.

In the fine-tuning stage of our initialization process, we
compute the PCA basis of hand shapes in our training set.
Let W be the PCA basis and x be coefficients, such that a
shape s can be reconstructed from coefficients as follows:

s = WTx+ s̄

where s̄ is the shape average. Given the joint center response
centroids J and bone tissue centroids B, we define the
following minimization problem:

E(ŝ, x, I) = arg min
x

∑
i,j

||Ji − ŝj ||22+ (3)

+
∑
k,l

||Bk − 0.5(ŝl + ŝl+1)||22+

+
∑
|x|

where i is the index of the joint centroid nearest to shape
point sj , and k is the index of the bone centroid nearest
to the average of a segment slsl+1, and the last term is a
regularization term that encourages the inferred shape to be
close to the average shape.

V. EVALUATION

We evaluated our approach on two datasets and found
that our method significantly increases the accuracy for joint
location estimation relative to the previous work. This result
demonstrates that even with relatively small datasets it is
possible to use learned feature representations to achieve

Fig. 5. Shapes with highest error in the RA dataset.

better performance than hand engineered features and shallow
learning techniques.

A. Datasets

We use two datasets, the Digital Hand Atlas Database1 and
a set of 116 radiographs of RA patients from the University of
Kentucky Department of Radiology. The University of Ken-
tucky dataset contains additional annotations of rheumatoid
arthritis disease stage. Both datasets have been manually an-
notated and verified by a radiologist. We use these ground truth
shapes to train the convnets, estimate CRF model parameters
and quantitatively evaluate inferred shapes and the low-level
features used in the CRF inference process. Since the data
is similar in both datasets, we alternate using one dataset for
training and the other for testing (e.g., we trained on UK and
report test on Hand Atlas, and vice-versa).

We augmented both datasets by rotating each image in 10
degree increments from −30 deg to +30 deg while maintain-
ing the resolution. This was done to learn invariance to rotation
and resulted in a significant improvement in robustness. For
evaluation, we look at two aspects of our approach: 1) the
estimated PDM and 2) the performance of our low-level
feature estimators.

1http://ipilab.usc.edu/BAAweb/



fbc1 (red), fbc2 (green) fj (red) fpc (green) fdc (red)

Fig. 4. Sample responses fbc1 , fbc2 , fj , fpc and fdc. Best seen in color, digital format.

TABLE II
LOW-LEVEL FEATURE QUANTITATIVE EVALUATION (CNN/RDF).

fbc1&fbc2 fj fpc fdc
Average Positive Probability 0.6223 / 0.5069 0.7128 / 0.4301 0.4830 / 0.3263 0.5960 / 0.3669
MCR (% of image) 0.0319 / 0.1297 0.0071 / 0.0252 0.0021 / 0.0137 0.0022 / 0.0088

Healthy average error: 1.7857
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Fig. 6. RA dataset errors computed as sum of absolute differences from ground truth for healthy, early, moderate and late stage. All models have been trained
on the Hand Atlas dataset.

B. Implementation Details

The CNNs were implemented using a customized version
of Caffe [13]. The resolution of the input and output feature
maps was 460× 600 in our experiments. Our networks were
trained in CPU on a 40-core Intel blade server using a mini-
batch size of 4. All models were trained on one of the datasets
and tested on the other.

There are known trade-offs between the filter size and
network depth in convolutional layers. We obtained the best
performance with 7 × 7 kernels in the convolutional layers.
During the CNN architecture development, we also noted

a significant performance improvement from the addition of
batch normalization layers.

Our approach to network design was incremental. We
started with a simple encoder-decoder architecture, with a
depth of 2 layers for each stage and a fixed kernel size of
7× 7. We gained accuracy increasing the number of layers to
5. A depth of more than 5 layers per stage decreased accuracy.
While there is increasing evidence of a relationship between
kernel size and network depth, we obtained the best results
with the structure we present in this paper.

d) Model parameter optimization: The parameter set θ
from Equation 2 is done using standard model selection, as



they encode the relative weight of each feature in the shape
inference process. The optimal θ are found by minimizing the
global pixel-wise error for the entire training set, as follows:

θ̂ML = arg min
θ

∑
i

∥∥∥∥arg min
s

E(s, θ, Ii)− sGTi
∥∥∥∥2
2

(4)

The above minimization is non-convex, hence many local
minima are possible. We use the simplex method to find the
optimal model parameters.

e) Shape inference evaluation: We evaluate our model
by computing the sum of absolute differences between ground
truth shapes and our model inference results. Shape inference
is done by minimizing Equation 2. In practice, we use a coordi-
nate descent algorithm, with a search region per coordinate is 7
pixels. This approach converges in a few seconds on a modern
desktop multi-core CPU. This algorithm was implemented in
MATLAB.

C. Qualitative and Quantitative Comparisons

By visual inspection, we found the CNN features to be
far superior to DSIFT+RDF. In Figure 7, we show samples
of each feature function fj(p), fdc(p), fpc(p),fbc1(p) for an
image using both CNN and DSIFT+RDF. Visually, one can
conclude that CNN features are much cleaner, with less noise
and increased localization accuracy.

To quantitatively evaluate the features, we look at two
performance metrics, summarized in Table II. First, for fbc1
and fbc2 , we take all the pixels along segments s1..19 and
compare the average probability. This number should be as
close to 1 as possible, the higher the better, since responses
along the main bone axes should activate. CNN features are
roughly 12% more confident. We take the same approach
for the other classifiers. CNN exceeds DSIFT+RDF in all
cases. As a second metric, we compute the ratio of incorrectly
classified pixels, specifically the misclassification rate (MCR),
computed as the ratio of incorrectly classified pixels and the
total number of pixels in the image (thresholding responses at
≥ 0.25). This metric gives us an insight into the localization
precision of the methods. Using this metric, our proposed
CNN-based feature extraction method outperforms previous
results based on DSIFT+RDF for all instances.

In Figure 8, we show the errors, in pixels, on the RA
dataset. The overall average error for all stages is 2.0521 pixels
compared to 3.0333 pixels in previous work [19], a significant
improvement. In Figure 5 we show the hands that had the
highest fitting errors in the RA dataset. The overall error for
the Hand Atlas dataset is 1.46 compared to 2.72 in Mihail et
al. [19], on the same images with the same resolution.

VI. CONCLUSION AND FUTURE WORK

Simple hand radiographs are used in clinical practice for
skeletal development assessment, rheumatic disease progres-
sion estimation, among other uses. Automatic estimation of
joint spaces and long-bone segments is useful in modeling
disease progression, e.g., RA. This paper improves on previous
work that fits a shape model to hand radiographs. We propose
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Fig. 8. Hand Atlas dataset errors computed as sum of absolute differences
from ground truth. All models have been trained on the UK dataset.

a hand shape inference method from radiographs based on
deep convolutional neural network features. The CNN features
are superior to those obtained using shallow features, e.g.
SIFT [16]. We quantitatively evaluate the features stand-
alone, as well as compare the final shape inference results
using shallow and deep CNN features. We note an average
improvement in the shape inference of roughly 1 pixel per
shape dimension compared to the previous work.

The task of shape estimation from hand radiographs is
related to non-medical shape estimation tasks, for example
the task of facial landmark localization [7], [8], [26]. Recent
approaches for this task, and other similar tasks, propose
deep learning architectures that are suitable for end-to-end
optimization. Our task is potentially well suited for end-to-
end optimization, but existing sets of hand radiographs are
significantly smaller than those available for other domains.
This leads to significant problems with overfitting, which
motivated our hybrid approach of using deep learning for low-
level features but CRF optimization for top-down inference.
We expect that by combining our proposed techniques with
larger datasets and end-to-end learning we will be able to
make further advances in future work. Upon acceptance of
this paper, we will release our fully trained models as well as
source code that implements CRF optimization.
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