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Automatic Hand Skeletal Shape Estimation
From Radiographs

Radu Paul Mihail

Abstract— Rheumatoid arthritis (RA) is an autoimmune
disease whose common manifestation involves the slow
destruction of joint tissue, a damage that is visible in a
radiograph. Over time, this damage causes pain and loss
of functioning, which depends, to some extent, on the
spatial deformation induced by the joint damage. Build-
ing an accurate model of the current deformation and
predicting potential future deformations are the important
components of treatment planning. Unfortunately, this is
currently a time-consuming and labor-intensive manual
process. To address this problem, we propose a fully
automated approach for fitting a shape model to the long
bones of the hand from a single radiograph. Critically, our
shape model allows sufficient flexibility to be useful for
patients in various stages of RA. Our approach uses a deep
convolutional neural network to extract low-level features
and a conditional random field (CRF) to support shape
inference. Our approach is significantly more accurate than
previous work that used hand-engineered features. We pro-
vide a comprehensive evaluation for various choices of
network hyperparameters, as current best practices lack
significantly in this domain. We evaluate the accuracy of
our pipeline on two large datasets of hand radiographs and
highlight the importance of the low-level features, the rel-
ative contribution of different potential functions in the
CRF, and the accuracy of the final shape estimates. Our
approach is nearly as accurate as a trained radiologist and,
because it only requires a few seconds per radiograph, can
be applied to large datasets to enable better modeling of
disease progression.

Index Terms—Rheumatoid arthritis, radiograph, condi-
tional random field, convolutional neural network.

I. INTRODUCTION

HEUMATOID Arthritis (RA) is an autoimmune disease,

with no known cure, that primarily affects synovial
joints, especially those of the hands. The disease typically
starts with inflammation and swelling, followed by the muti-
lation of joints through healthy tissue loss and scar tissue
formation. The causes of the disease are multiple; genetic
susceptibilities, lack of exercise, and environmental factors are
considered to play a role in the onset and progression of the
disease.
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Fig. 1. Our radiograph shape fitting pipeline. Input image (left) is directly
processed by a set of deep convolutional neural networks to produce
feature maps (middle) that correspond to key anatomical features. The
final shape (right) is inferred using a conditional random field (CRF).

Imaging of the hand is a routine procedure used by radi-
ologists to assess the extent of the damage and to estimate
the stage of disease progression. Disease staging can be a
complex process, a function of key anatomical features and
changes from a healthy baseline. Some of those features
include the inter-joint spaces that tend to get smaller as the
disease progresses. Recently, Pfeil e al. [20] have investigated
using automated estimation of joint spaces as a predictor of RA
disease progression with success. This motivates further work
in this area, since different combination of medications may be
more effective at earlier stages in the disease progression [22].

Automated joint space estimation is challenging for several
reasons. First, the process for capturing radiographs, which
are typically in the posteroanterior (PA) view, results in sig-
nificant variability in hand placement and joint configuration.
Such variability is acceptable for radiologists, but means
that automated systems must cope with these differences.
Second, appearance variations in radiographs appear due to
inconsistent image acquisition parameters from calibration,
digitization artifacts from film radiographs (scanner calibra-
tion), and anatomical differences. Appearance variations due to
anatomy can be classified into two categories: differences from
individual to individual and morphological differences due
to disease (e.g., theumatoid arthritis, osteoporosis), including
inflammation and surgery.

We propose a fully automatic approach to estimating the
configuration of the long bones of the hand from a radiograph.
We adopt a previously introduced shape model [19] and com-
bine bottom-up supervised feature extraction with a top-down
shape inference process in the form of a conditional random
field (CRF). We propose several novel improvements to the
previous work on this problem, including improved low-level
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features and better initialization for the CRF optimization.
These changes substantially increase the accuracy and robust-
ness without increasing the run time during inference.

We make the following key contributions: 1) an improved
low-level feature extraction process that uses deep fully con-
volutional neural networks (CNNs), 2) an improved CRF
initialization strategy, and 3) an evaluation on a large datasets
that demonstrates the benefit of our improvements.

Il. RELATED WORK

Hand radiograph analysis has been investigated in the
past and continues to receive attention from the computer
vision and medical imaging research communities. We group
related work into three categories: parametric shape model
fitting to radiographs (most related to this work), hand radi-
ograph pixel-level labeling algorithms and general radiograph
analysis, a combination of parametric and non-parametric
models and pixel-level operations. Our problem formula-
tion is similar to face landmark localization and human
pose estimation [4], [11], [24]. Recently, significant progress
has been made in the above mentioned domains using
end-to-end localization using CNNs. This is made possible
by extremely large training sets, both real and synthetic.
Our proposed method relies on significantly less training
data, and thus a direct comparison is not made in this
work.

Registration of hand bones has been explored using mul-
tiple imaging modalities. Simple radiographs are the least
expensive modality and typically the first diagnostic imaging
order by rheumatologists, for diagnosis as well as disease
tracking [6], [17]. The carpal bones have overlap in 2D views
and present significant challenges for vision based algo-
rithms, but have been used with moderate success [3], [25].
Volumetric modalities such as computed tomography (CT
or CAT) and magnetic resonance imaging (MRI) have also
been used with registration algorithms, for both parametric
and non-parametric model fitting. Chen et al. [3] propose
a semantic segmentation and registration pipeline for the
carpal bones from volumetric CT data using Grow Cut [25].
Mihail ef al. [19] approximate these functions using dense
SIFT [16] features and random decision forest (RDF) [5]
classifiers. Since the relative size of hands (and bones) are
similar in all images, the SIFT features at a fixed scale and
orientation performed well with RDF classifiers. Our approach
differs from others by not using manually engineered features.
Instead, the features we use are learned using deep fully
convolutional networks. Many fully convolutional network
models have been proposed in the recent past, however, for
biomedical image segmentation U-Net [21] is most similar to
our design.

Parametric models for shape inference have been used in
the past on hand radiographs. These algorithms typically rely
on a set of image pre-processing or feature extraction steps
for model initialization and inference. This work is closely
related to that of Martin-Fernandez et al. [18], who use a
wire model whose wires correspond to the major axis of the
hand’s metacarpal and phalanges (long bones in the hand).

Our shape model: each segment corresponds to a bone
19)- Individual points are indexed as proximal s;1, .. 19)p and distal

S(1,...,19}d-

Their method registers this wire model to previously unseen
radiographs using a variation of thin plate splines (TPS)
algorithm. However such representations are not well suited
to modeling the joint displacements in RA patients.

Pediatric skeletal maturity estimates are used to diag-
nose growth disorders, timing of surgical interventions, and
endocrine disorders. This estimate is typically done on
hand radiographs using Greulich and Pyle atlas (G&P) [9].
Bunch er al. [2] integrated automated bone age assessment
methods to increase clinician reporting quality and speed.
Larson et al. [15] directly use a deep learning architecture
to estimate skeletal maturity from pediatric radiographs.
Giiraskin et al. [10] used hand radiographs to pediatric skele-
tal maturity using a cascade of morphological operations that
result in six features used as input to classification algorithms
(support vector machines, k-nearest neighbors, decision trees,
and naive Bayes).

In contrast to methods that directly estimate a property from
hand radiographs, our method provides very accurate locations
of the bones that are typically used in higher level analyses.

[1l. PROBLEM FORMULATION

Given a roughly centered radiograph in posteroante-
rior (PA) view, our goal is to estimate the landmark points
s = {s1,...,s19} that correspond to the epiphyses (end parts
of long bones) of the metacarpal and phalanges along their
main axis, as seen in Figure 2.

We approach the shape fitting problem by formulating the
problem probabilistically. We define the best shape s for an
image I, as the shape s that maximizes P(s|/). We look
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for a factorization of the conditional P(s|I) that is both
tractable to approximate and captures conditional dependen-
cies (e.g., shape points are not in the middle of a long bone).
To accomplish this, we adopt a conditional random field (CRF)
to represent the distribution. We integrate a set of low-level
features, which are described below, in the potential functions
of a CRF. The CRF has the following form:

1
PGsI1,0) = —exp(D (D> ¥)(sips 5iy> 0)
i
+ > (i, )+ (5,0} (1)
k

where i is an index over model segments, j and k index our
binary and unary appearance terms, Z is the partition function,
Y and ¢ are, respectively, binary and unary appearance terms,
¢ is a shape model prior and 6 is a weight vector we use
to balance the various terms. In the following subsections,
we define the potential functions, irrespective of the low-level
features, discussed in detail in Section IV-A. In the remainder
of this paper, we describe our approach to solving this prob-
lem, present evaluation results, and discuss the implications of
this work.

IV. APPROACH

Our pipeline consists of two stages: low-level feature
extraction, and a CRF whose maximum a posteriori (MAP)
inference yields the optimal shape for a given image. In this
section, we describe the various components of our approach
for estimating the shape s for a given hand radiograph I,
including: a deep convolutional neural network for extracting
features from the imagery (Section IV-A); our process for
converting these features into potential functions for our
CRF (Section IV-B); our shape prior (Section IV-C); and
the inference process, including shape initialization and CRF
optimization (Section V).

A. Convnet for Hand Segmentation

For our low-level feature extraction process, we first define
the following functions of image locations (p is a point on an
image):

1) f;j(p): aresponse function where the response is highest
over epiphyseal surfaces of long bones aligned with their
main axes,

2) fpe(p): a response function with maximal activation
over proximal (closest to the center of the body)
epiphyseal surfaces,

3) fac(p): same as f,. but with maximal responses at the
distal (farthest from the center of the body) epiphyseal
surfaces,

4) fpe1(p): a response function with maximal responses
over the main axes of a subset of the long bones
(metacarpals and middle phalanges), and

5) foe2(p): a response function with maximal responses
over the main axes of long bones (proximal and distal
phalanges).

In the remainder of this section, we describe how we compute
these functions from image data.

We formulate low-level feature extraction as a semantic seg-
mentation problem. Neural networks have seen a tremendous
amount of attention in the ML community over the last decade
due to significant improvements in optimization algorithms
and a better understanding of gradient and data propagation
through the networks [12], [14], [23]. This formulation allows
us to use existing knowledge from the semantic segmentation
literature.

The biologically meaningful semantic classes we need are
the joints and bones. Joint tissue is further divided into
joint spaces, proximal and distal cortical surfaces. We group
bones into two groups: 1) metacarpals and middle phalanges
and 2) proximal and distal phalanges. Using this taxonomy,
we propose to perform semantic segmentation using a novel
fully convolutional network architecture.

Given an image I, and semantic label set £ = {l1, >, ... Ik},
a semantic segmentation algorithm will assign one of k labels
to each pixel in /. Often, the output of such algorithms is
a distribution over the labels, and the label with the highest
likelihood is chosen. If there are two classes (e.g., background
and bone tissue) |£| = 2, then our previously defined response
functions directly correspond to a pixel’s segmentation like-
lihood. We now discuss our proposed convolutional network
architecture.

Our network is designed using an encoder/decoder architec-
ture. The encoder learns a low-dimensional representation of
the input image. The decoder upsamples this low-dimensional
representation to the original resolution, but whose content is
semantically meaningful. This approach is similar to that of
Badrinarayanan et al. [1] and Ronneberger et al. [21].

We are interested in 4 semantic classes: long bone tissue
along its main axis, joint tissue (between long bones), proximal
epiphyseal tissue (end of the bone nearest the body) and distal
epiphyseal tissue (end of the bone farthest from the body).

Our encoder stage consists of a set of convolutional layers,
batch normalization, and maxpool layers. The encoder stage
ends at a bottleneck, where the network learns low resolution
representations of the image. The encoder is composed of 5
convolutional layers (convolution, batch normalization, and
maxpool) with 16 feature maps each. Each downsampling
layer in the encoder has an upsampling pair layer in the
decoder stage.

The decoder stage begins at the bottleneck, consists of
upsampling layers, followed at last by a softmax classifier
that makes the final pixel-wise semantic label prediction. The
softmax layer has the same resolution as the input image.
The upsampling layers use indices from corresponding max-
pool layers in the encoder stage. Each convolutional layer
is followed by a batch normalization layer and a rectified
linear activation (ReLU) layer. In Table I we summarize the
network’s convolutional layer hyperparameters during training.

B. CRF Potential Functions

The low-level features are combined in various ways to
construct a set of binary and unary potential functions that
our CRF optimization process uses to fit the final shape.

1) Unary Potential Functions: The unary potential functions
encode the compatibility between individual shape points s;,
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TABLE |
OUR NETWORK ARCHITECTURE: b IS THE BATCH SIZE AND ¢ IS THE
NUMBER OF SEMANTIC SEGMENTATION CLASSES

Layer Shape Kernel
conv0 bx 16 x 600 x 460 | 7x 7
pool0 bx 16 x 300 x230 | 3x3
convl bx 16 x300x230 | 7x7
pooll bx 16 x 150 x 115 | 3 x 3
conv2 bx 16 x 150 x 115 | 7x 7
pool2 bx 16 X 75 x 57 3x3
conv3 bx 16 x 75 X 57 7TXx7
pool3 bx 16 x 37 x 28 3x3
convd bx 16 x 37 x 28 7TxXT
poold bx 16 x 18 x 14 3x3
upsampled bx 16 x 37 x 28 3x3
convd_D bx 16 x 37 x 28 Tx7
upsample3 bx 16 x 75 x 57 3x3
conv3_D bx 16 X 75 x 57 TxT
upsample2 bx 16 x 150 x 115 | 3 x 3
conv2_D bx 16 x 150 x 115 | 7x 7
upsamplel bx 16 x 300 x 230 | 3x3
convl_D bx16 x300x230 | 7x7
upsampleQ bx 16 x 600 x 460 | 3 x 3
conv0_D bx 16 x 600 x 460 | 7x 7
conv_00 bx 16 x 600 x 460 | 9 x 9
conv_classifier | bx ¢ x 600 x 460 3x3
(proximal), s;, (distal) and the image, where i € {1,...,19}.

The first potential function we define encourages shape points
to be on or near cortical surfaces of bones (both proximally and
distally). This function will make use of the low-level feature
function f; through a function df;(p) (shown in Figure 3),
defined as follows:

df; = 1 — fj(p), if fj(p) is non-zero
T a, £ 7)  otherwise

where d(p, f) is the distance to the closest non-zero point in
f from p.
We can now define the unary potential ¢ as follows:

d1(s;) = 01df(si)

We further define two unary potential functions that encourage
shape points to discriminate between proximal and distal
cortical surfaces. These functions increase the accuracy of the
final fit by encouraging an image-driven joint distance.

Intuitively, the functions ¢; provides a rough alignment with
joints, however, it does not discriminate between the proximal
and distal bone in a joint. We make use of low-level feature
functions fzc and f). to define augmented distance functions
dfpc and dfy. as follows:

1 — fpe(p), if fpc(p) is non-zero

d =
Tre d(p, fpc)  otherwise
and
1 — fae(p), if fyc(p) is non-zero
dfdc = .
d(p, fic)  otherwise

where d(p, f) is the same distance function to a non-zero
point p in f as in Equation 2.
Our potential functions are defined as follows:

P2(siy) = Gdfuc(siy)

and

$3(si,) = 03d fpc(si,)

2) Binary Potential Functions: The potential functions ¥
and ¥» encode the compatibility between a shape segment i,
with points i, (proximal), iy (distal) and bone tissue using
Sfoe1 and fpe2 (fpe,)- These functions should be at a minima
when any segment s is directly over the main axis of a
bone. We define an augmented distance function df, (p) from
Soe, (p) as follows:

. = 1 — fbex(p), if foe, (p) is non-zero
R (P frey) otherwise

If we ensure max(fpc,) < 1 and interpret it as the probability
of pixel’s p membership to the long bone semantic category,
the complement of the collection of non-zero points from fj,,
adds precision to the basins of attraction. Having df},. defined
(shown in Figure 3), we can now define ¥ as follows:

1 t
Wi (5iy Sig) = 04~ D dfo (P> Py)

n=1

and

1 t
Pasiy, sig) = 05 > dfp(pxys Py,)

n=1

C. Hand Shape Potential Function

The shape prior term ((s,6) is a global term used to
encourage inferred shapes to lie closely in the subspace of
known shapes. We model this knowledge using Probabilistic
Principal Component analysis, where the goal is to relate
shape s to a k-dimensional vector x, where k < dim(s) and
x is of zero mean and unit covariance (I (k)), such that:

sT=wxl +5+e¢

where § is the average shape and € is a normally distributed
model noise component. Using this model, we can assign a
probability to any shape s:

P(s) = NG, WWT + 621 (k)
and formulate our prior as a weighted negative log likelihood

of P(s):
{(s,0) = Os(—log(P(s)))

D. Shape Inference

To perform shape inference, we compute the MAP solution
to the CRF by taking the log-likelihood of the model, yielding
an energy function E:

E(,0,1) = argsrninzi:{z W (siy» 8ig>0)

J

+ " Gl O} +C(5,0). ()
k



300

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 18, NO. 3, JULY 2019

dfbl dsz
Fig. 3. Visualization of dfy, , dfp,, dj, dfpc and dfyc.

il ;
fbcl (red), fbcz (green)

§ . ’.l!A

_
df;

dfpc dfdc

fpc (green) fdc (red)

Fig. 4. Sample responses fye, , fpc,, fj; foc and fye. Best seen in color, digital format.

As we can see from Equation 2, the optimal shape § for
image I using model parameters 6 is obtained when the
energy function is minimized. The minimization problem is
non-convex with many possible local minima, hence, a robust
initialization procedure is important. The initialization routine
computes a shape § from which local search is started.

1) Shape Initialization: Our initialization process consists of
two stages: rough initialization using a variation of the Iterative
Closest Point (ICP) algorithm and a fine-tuning local search
stage using PCA. For the rough initialization stage, we com-
pute the connected component statistics (centroid and major
spanning axis) for our bone tissue responses, fhe, and fpc,.
These segments are used to register an average hand with the
ICP algorithm.

In the fine-tuning stage of our initialization process,
we compute the PCA basis of hand shapes in our training
set. Let W be the PCA basis and x be coefficients, such that
a shape s can be reconstructed from coefficients as follows:

s=WTlx+5

where 5 is the shape average. Given the joint center response
centroids J and bone tissue centroids B, we define the
following minimization problem:

EGS,x,I)= argminZHJi —§j||%
X i,j
+ D 1B = 0.5 + 34D+ D Ixl - (3)

k,l

where i is the index of the joint centroid nearest to shape
point s;, and k is the index of the bone centroid nearest
to the average of a segment 575,41, and the last term is a
regularization term that encourages the inferred shape to be
close to the average shape.

V. EVALUATION

We evaluated our approach on two datasets and found
that our method significantly increases the accuracy for joint
location estimation relative to the previous work. This result
demonstrates that even with relatively small datasets it is
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Fig. 5. Shapes with highest error in the RA dataset.

possible to use learned feature representations to achieve
better performance than hand engineered features and shallow
learning techniques.

A. Datasets

We use two datasets, the Digital Hand Atlas Database! and
a set of 116 radiographs of RA patients from the University of
Kentucky Department of Radiology. The University of Ken-
tucky dataset contains additional annotations of rheumatoid
arthritis disease stage. Both datasets have been manually anno-
tated and verified by a radiologist. We use these ground truth
shapes to train the convnets, estimate CRF model parameters
and quantitatively evaluate inferred shapes and the low-level
features used in the CRF inference process. Since the data
is similar in both datasets, we alternate using one dataset for
training and the other for testing (e.g., we trained on UK and
report test on Hand Atlas, and vice-versa).

We augmented both datasets by rotating each image in
10 degree increments from —30deg to 4+30deg while main-
taining the resolution. This was done to learn invariance to
rotation and resulted in a significant improvement in robust-
ness. For evaluation, we look at two aspects of our approach:
1) the estimated PDM and 2) the performance of our low-level
feature estimators.

B. Implementation Details

The CNNs were implemented using a customized version
of Caffe [13]. The resolution of the input and output feature
maps was 460 x 600 in our experiments. Our networks were
trained in CPU on a 40-core Intel blade server using a mini-
batch size of 4. All models were trained on one of the datasets
and tested on the other.

There are known trade-offs between the filter size and
network depth in convolutional layers. We obtained the best
performance with 7 x 7 kernels in the convolutional layers.
During the CNN architecture development, we also noted
a significant performance improvement from the addition of
batch normalization layers.

Our approach to network design was incremental.
We started with a simple encoder-decoder architecture, with
a depth of 2 layers for each stage and a fixed kernel size of

Uhttp://ipilab.usc.edu/BA Aweb/

7 x7. We gained accuracy increasing the number of layers to 5.
A depth of more than 5 layers per stage decreased accuracy.
While there is increasing evidence of a relationship between
kernel size and network depth, we obtained the best results
with the structure we present in this paper.

C. Network Design Choices for Low-Level
Feature Extraction

In this section, we systematically evaluate the hyperpara-
meters used in the encoder/decoder networks. Three sets of
tests were performed by altering depth (i.e., number of layers),
kernel size, and number of kernels. For each design choice,
we also controlled the number of output feature maps, result-
ing in two extra categories of models: single output models
(one model per low-level feature, named as Modeliy1F),
and multi-output models (one model to predict all low-level
features, Model|y5r). We trained and tested a total of 222
models with different hyperparameters choices on the same
train/test sets. Each model was trained for 100 epochs. Every
experiment was repeated three times. The results presented in
this section are the averaged results over the three times.

1) Depth and Kernel Size: We wuse an 1l-layer
encoder/decoder network to extract the low-level feature
in this study, which has five convolution layers before the
bottleneck and five convolution layers after the bottleneck
layer. Each layer has 16 7 x 7 kernels.

According to our experiments, this was the optimal choice
of hyperparameters. In order to gain more insight into design
choices, we first evaluated how the depth (the number of
layers before and after the bottleneck) and kernel size affect
the model performance. We tested six depths, Depth = 2 to
7 (there are 2 to 7 convolution layers before and after the
bottleneck) and two kernel sizes, Kernel =7 x 7 or 3 x 3.

Our experiments show that 7 x 7 kernels generally perform
better than 3 x 3 kernels. The exception is the f,. feature of
both of Model|y5F and Model;p1F. Among all the models,
Kernel =7 x 7, Depth = 5 has consistently better perfor-
mance. Model|ysr and Model iy, both with Kernel =
7 x7 and Depth = 5, achieved the best performance on 3 out
of 4 features. See Table III for details.

2) Fixed Number of Kernels: The model used in this study
has 16 kernels in each layer. We evaluated whether this is
the optimal choice. In this experiment, we fix the depth and
kernel size at 5 and 7 but use different numbers of kernels.
In these models, each layer has the same number of kernels.
We evaluated models with 2, 4, 8, 16, and 32 kernels per layer.

This experiment shows that for most of the models, a larger
number of kernels results in better performance. For instance
models of 2 and 4 kernels at each layer constantly performed
worse than the others. Models with 16 and 32 kernels per layer
achieved the best results. See Table IV for details.

3) Exponentially Increased Number of Kernels: U-net, one
of the popular encoder/decoder architecture, increases the
number of kernels at each layer exponentially with a factor
of 2. For instance, if the encoder starts with k£ kernels at
the first convolutional layer, the number of the kernel of
the second layer equals k x 2!, the number of the kernel of
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TABLE Il
Low-LEVEL FEATURE QUANTITATIVE EVALUATION (CNN/RDF)

fb(:l &fbcg f

fpc fdc

Average Positive Probability

J
0.6223 / 0.5069 | 0.7128 / 0.4301

0.4830 / 0.3263 | 0.5960 / 0.3669

MCR (% of image) 0.0319 / 0.1297

0.0071 / 0.0252

0.0021 / 0.0137 | 0.0022 / 0.0088

Healthy average error: 1.7857

Early average error: 2.1624

Image Image

Moderate average error: 1.8477 Late average error: 2.3253

Image Image

Fig. 6. RA dataset errors computed as sum of absolute differences from ground truth for healthy, early, moderate and late stage. All models have

been trained on the Hand Atlas dataset.

TABLE IlI
TESTING RESULTS FOR DIFFERENT DEPTHS AND KERNEL SIZES
Model; /57 Model; a1 7
Depth | Kernel Soc1& foca fi fde foc o1& foc2 fi fac fpe

MCR! [APP?| MCR [ APP | MCR [ APP | MCR [ APP | MCR [ APP | MCR | APP | MCR | APP | MCR | APP
2 7 0.028 | 0.67 | 0.0128 | 0.75 | 0.0016 | 0.46 | 0.0021 | 0.64 | 0.0305 | 0.72 0.01 0.80 | 0.0015 | 0.60 | 0.0019 | 0.67
3 7 0.0212 | 0.82 | 0.0102 | 0.82 | 0.0022 | 0.63 | 0.0035 | 0.77 | 0.0218 | 0.83 | 0.0075 | 0.80 | 0.0015 | 0.62 | 0.0022 | 0.79
4 7 0.0197 | 0.85 | 0.0098 | 0.82 | 0.0028 | 0.65 | 0.0034 | 0.74 | 0.0162 | 0.84 | 0.0075 | 0.81 | 0.0016 | 0.63 | 0.002 | 0.71
5 7 0.0174 | 0.86 | 0.0096 | 0.83 | 0.0016 | 0.68 | 0.0023 | 0.75 | 0.0151 | 0.86 | 0.0074 | 0.85 | 0.0015 | 0.68 | 0.0019 | 0.74
6 7 0.019 | 0.84 | 0.0095 | 0.82 | 0.0022 | 0.65 | 0.0028 | 0.72 | 0.0157 | 0.84 | 0.0078 | 0.82 | 0.0015 | 0.70 | 0.0022 | 0.78
7 7 0.0186 | 0.84 | 0.0088 | 0.84 | 0.0019 | 0.64 | 0.0023 | 0.71 | 0.0155 | 0.83 | 0.0072 | 0.81 | 0.0015 | 0.69 | 0.0019 | 0.73
2 3 0.028 | 0.48 | 0.0222 | 0.65 | 0.0016 | 0.45 | 0.0019 | 0.49 | 0.0188 | 0.55 | 0.0123 | 0.65 | 0.0015 | 0.43 | 0.0018 | 0.59
3 3 0.0211 | 0.64 | 0.0141 | 0.71 | 0.0017 | 0.52 | 0.0026 | 0.57 | 0.0224 | 0.68 | 0.093 | 0.79 | 0.0015 | 0.53 | 0.0018 | 0.67
4 3 0.0269 | 0.79 | 0.0095 | 0.78 | 0.0016 | 0.58 | 0.0018 | 0.71 | 0.0184 | 0.80 | 0.0093 | 0.76 | 0.0016 | 0.58 | 0.0018 | 0.68
5 3 0.0197 | 0.81 | 0.0102 | 0.81 | 0.0016 | 0.61 | 0.0019 | 0.76 | 0.0165 | 0.78 | 0.0077 | 0.81 | 0.0015 | 0.62 | 0.0018 | 0.71
6 3 0.0186 | 0.81 | 0.0101 | 0.81 | 0.0016 | 0.68 | 0.0019 | 0.72 | 0.0159 | 0.82 | 0.0074 | 0.82 | 0.0016 | 0.67 | 0.0018 | 0.79
7 3 0.0189 | 0.85 | 0.0102 | 0.81 | 0.0019 | 0.64 | 0.0019 | 0.75 | 0.0162 | 0.81 | 0.0076 | 0.82 | 0.0016 | 0.66 | 0.0019 | 0.73

T'MCR (% of image), 2 Average Positive Probability

TABLE IV
TESTING RESULTS FOR DIFFERENT NUMBER OF KERNEL, THE NUMBER OF KERNEL IS SAME FOR EVERY LAYER WITHIN THE SAME MODEL
Model; /57 Model; pr1r
# of kernels Foc1& foc2 fi fae foe Foc1& foc2 fi fae foe

MCRT [APP2| MCR | APP | MCR | APP | MCR | APP | MCR | APP | MCR | APP | MCR | APP | MCR | APP
2 0.051 0.73 | 0.041 | 0.63 | 0.0016 | 0.31 | 0.0018 | 0.41 | 0.0287 | 0.82 | 0.0129 | 0.55 | 0.0026 | 0.60 | 0.0041 | 0.71
4 0.0235 0.84 | 0.0136 | 0.80 | 0.0045 | 0.56 | 0.0042 | 0.65 | 0.0186 | 0.84 | 0.0094 | 0.83 | 0.0018 | 0.65 | 0.0024 | 0.72
8 0.00195 | 0.85 | 0.0091 | 0.81 | 0.0016 | 0.64 | 0.0021 | 0.72 | 0.0159 | 0.84 | 0.0074 | 0.86 | 0.0017 | 0.69 | 0.0019 | 0.71
16 0.00174 | 0.86 | 0.0096 | 0.83 | 0.0016 | 0.68 | 0.0023 | 0.75 | 0.0151 | 0.86 | 0.0074 | 0.85 | 0.0015 | 0.68 | 0.0019 | 0.74
32 0.00174 | 0.85 | 0.0082 | 0.81 | 0.0023 | 0.62 | 0.0025 | 0.73 | 0.0153 | 0.84 | 0.0067 | 0.82 | 0.0015 | 0.62 | 0.0021 | 0.72

T MCR (% of image), 2 Average Positive Probability

the third layer equals to k x 22, and so on. In this experiment,
we evaluate whether this type of architecture has an effect on
the model performance. Since U-net uses a factor of 2 and we
already know the performance of U-net, in this work, we only
evaluated the exponential between 1 and 2, more specifically,
we evaluated 1.2, 1.4, 1.6, and 1.8. We set the number of
kernels at the first layer to 2, 4, 8, 16, and 32.

We found that a larger number of kernels at the initial
layer and a larger exponential number is associated with
better performance until the number of kernels reaches 16,

after which the model performance decreases significantly.
See Table V for more detail.

D. CRF Model Parameter Selection

1) Model Parameter Optimization: The parameter set § from
Equation 2 is done using standard model selection, as they
encode the relative weight of each feature in the shape
inference process. The optimal 6 are found by minimizing the
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TABLE V
TESTING RESULTS FOR DIFFERENT NUMBER OF KERNEL, THE NUMBER OF KERNEL IS CHANGED EXPONENTIALLY

MOdellA45F ModellMlF
Exponential | # of kernels' | f101& fyc2 fi fde foe Soc1& foe2 fi fde foc

MCRZ [APP3 | MCR APP MCR | APP MCR APP MCR APP | MCR APP MCR APP MCR APP
1.2 2 0.0365 | 0.72 | 0.0096 | 0.51 | 0.0015| 0.21 [ 0.0018 | 0.24 | 0.0233 | 0.84 | 0.0128 | 0.76 | 0.0015 | 0.22 | 0.0037 | 0.71
1.2 4 0.0174 | 0.86 | 0.0104 | 0.83 | 0.0032 | 0.63 | 0.0037 | 0.75 | 0.0171 | 0.84 | 0.0075 | 0.78 | 0.0015 | 0.64 0.002 | 0.71
1.2 8 0.0163 | 0.87 | 0.0093 | 0.88 |0.0015|0.73|0.0018 | 0.81 |0.0158 | 0.86| 0.0079 |0.81| 0.0015 | 0.59 | 0.0023 [0.73
1.2 16 0.0165 | 0.87 | 0.0083 | 0.86 | 0.0015| 0.71 | 0.0018 | 0.78 | 0.016 | 0.82 | 0.0075 | 0.78 | 0.0015 | 0.61 0.0024 | 0.72
1.2 32 0.0171 | 0.86 | 0.087 | 0.84 | 0.0016 | 0.65 | 0.0018 | 0.75 | 0.0204 | 0.86 | 0.0102 | 0.76 | 0.0015 | 0.77 | 0.0025 | 0.73
1.4 2 0.0215 | 0.83 | 0.0095 | 0.81 | 0.0015| 0.57 | 0.0033 | 0.68 | 0.0191 | 0.71 | 0.0094 | 0.79 | 0.0015 | 0.6058 | 0.0021 | 0.51
1.4 4 0.0162 | 0.87 | 0.0094 |0.84|0.0015|0.71 | 0.0025 | 0.81|0.0157 | 0.84 | 0.0082 |0.88 | 0.0017 | 0.63 | 0.0024 | 0.71
1.4 8 0.0162 | 0.88 | 0.0094 |0.84|0.0015| 0.68 | 0.0018 | 0.76 | 0.0161 | 0.85 | 0.0079 | 0.82 | 0.0016 | 0.59 |0.0019|0.73
1.4 16 0.0166 | 0.87 | 0.0078 | 0.84 | 0.0016 | 0.70 | 0.0018 | 0.77 | 0.0167 | 0.83 | 0.0077 | 0.85 | 0.0016 | 0.62 |0.0019|0.73
1.4 32 0.0174 | 0.85 | 0.0087 [0.84|0.0015| 0.67 | 0.0021 | 0.76 | 0.0199 | 0.86 | 0.0094 | 0.77 | 0.0016 | 0.75 | 0.0029 | 0.69
1.6 2 0.0169 | 0.87 | 0.0101 | 0.82 | 0.0046 | 0.56 | 0.0047 | 0.66 | 0.0162 | 0.70 | 0.0082 | 0.82 | 0.0017 | 0.53 | 0.0019 | 0.73
1.6 4 0.0172 | 0.92 | 0.0087 | 0.85 | 0.0019 | 0.69 | 0.0025 | 0.82|0.0147 | 0.84 | 0.071 | 0.80 | 0.0016 0.68 0.002 | 0.74
1.6 8 0.0169 | 0.86 | 0.0083 | 0.84 | 0.0016 | 0.69 | 0.0019 | 0.72 | 0.0158 | 0.81 | 0.077 |0.83|0.0015| 0.62 0.002 |0.75
1.6 16 0.0154 | 0.92 | 0.0064 | 0.88 | 0.0015 | 0.74 | 0.0018 | 0.78 | 0.0169 | 0.81 | 0.071 | 0.81 | 0.0015| 0.68 |0.0018|0.75
1.6 32 0.0288 | 0.83 | 0.0098 | 0.81 | 0.0022 | 0.56 | 0.0026 | 0.70 | 0.0186 |0.84| 0.079 | 0.80 | 0.0022 | 0.70 |0.0018 | 0.70
1.8 2 0.0151 | 0.87 | 0.0076 | 0.85 | 0.0018 | 0.70 | 0.0021 | 0.76 | 0.0155 | 0.71 | 0.072 | 0.80 | 0.0015| 0.58 | 0.0021 | 0.70
1.8 4 0.0171 | 0.89 | 0.0091 | 0.83 | 0.0015| 0.68 | 0.0022 | 0.75 | 0.0155 | 0.85 | 0.071 | 0.80 | 0.0016 | 0.65 |0.0018|0.74
1.8 8 0.0166 | 0.87 | 0.008 | 0.88 | 0.0015| 0.72 | 0.0019 | 0.77 | 0.0163 | 0.82 | 0.078 | 0.83 | 0.0016 | 0.60 |0.0018 | 0.70
1.8 16 0.0155 | 0.89 | 0.0068 | 0.90 | 0.0015 | 0.81 | 0.0018 | 0.79 | 0.0171 | 0.84 | 0.074 |0.84|0.0015| 0.69 |0.0018|0.74
1.8 32 0.027 | 0.80 | 0.0114 | 0.75 | 0.0016 | 0.56 | 0.0018 | 0.64 | 0.0205 |0.86| 0.079 | 0.81 | 0.0016 | 0.71 |0.0018 | 0.71

T # of kernels at the first layer,

global pixel-wise error for the entire training set, as follows:

oML — arg min

2

“4)

argmin E(s, 0, I;) — sl-GT
N

2

The above minimization is non-convex, hence many local
minima are possible. We use the simplex method to find the
optimal model parameters.

E. Inference

1) Shape Inference Evaluation: We evaluate our model by
computing the sum of absolute differences between ground
truth shapes and our model inference results. Shape inference
is done by minimizing Equation 2. In practice, we use a
coordinate descent algorithm, with a search region per coordi-
nate is 7 pixels. This approach converges in a few seconds
on a modern desktop multi-core CPU. This algorithm was
implemented in MATLAB.

2) Ablation Study: To gain insight into the CRF model
functions, we perform an ablation study by removing each
potential function from the model, and noting the increase in
error. In Table VI, we show the results. All terms are shown
to be helpful. Removing joint center information contributes
to the highest increase in error. The hand prior term is
also significant, since its removal causes the second most
significant increase in error.

F. Qualitative and Quantitative Comparisons

By visual inspection, we found the CNN features to be far
superior to DSIFT+RDE. In Figure 7, we show samples of

each feature function f;(p), fic(p), foc(P),foe,(p) for an
image using both CNN and DSIFT+RDF. Visually, one can

MCR (% of image), > Average Positive Probability

TABLE VI
INCREASE IN ERROR (IN PIXELS) WHEN REMOVING INDIVIDUAL CRF
TERMS. THE TERM THAT CONTRIBUTES TO THE HIGHEST ERROR
INCREASE IS THE JOINT CENTER TERM ¢4,
FOLLOWED BY THE PRIOR ¢

Term Uy P P2 @3 1 q
Error increase | 2.148 | 2.296 1.540 | 1.941 | 2.950 | 2.406

conclude that CNN features are much cleaner, with less noise
and increased localization accuracy.

To quantitatively evaluate the features, we look at two
performance metrics, summarized in Table II. First, for fj,
and fpe,, we take all the pixels along segments si 19 and
compare the average probability. This number should be as
close to 1 as possible, the higher the better, since responses
along the main bone axes should activate. CNN features are
roughly 12% more confident. We take the same approach
for the other classifiers. CNN exceeds DSIFT+RDF in all
cases. As a second metric, we compute the ratio of incorrectly
classified pixels, specifically the misclassification rate (MCR),
computed as the ratio of incorrectly classified pixels and the
total number of pixels in the image (thresholding responses
at > 0.25). This metric gives us an insight into the localization
precision of the methods. Using this metric, our proposed
CNN-based feature extraction method outperforms previous
results based on DSIFT+RDF for all instances.

In Figure 6, we show the errors, in pixels, on the RA
dataset. The overall average error for all stages is 2.0521 pixels
compared to 3.0333 pixels in previous work [19], a significant
improvement. In Figure 5 we show the hands that had the
highest fitting errors in the RA dataset. The overall error for
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Bone Joint Centers Proximal Cortical Surface Distal Cortical Surface
Fig. 7. Top: DSIFT+RDF features. Bottom: convnet features. The difference in quality and precision is evident by simple visual inspection.
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Fig. 8. Hand Atlas dataset errors computed as sum of absolute
differences from ground truth. All models have been trained on the UK
dataset.

the Hand Atlas dataset is 1.46 compared to 2.72 in Mihail
et al. [19], on the same images with the same resolution.

VI. CONCLUSION AND FUTURE WORK

Simple hand radiographs are used in clinical practice for
skeletal development assessment, rheumatic disease progres-
sion estimation, among other uses. Automatic estimation of
joint spaces and long-bone segments is useful in modeling
disease progression, e.g., RA. This paper improves on previous
work that fits a shape model to hand radiographs. We propose
a hand shape inference method from radiographs based on
deep convolutional neural network features. The CNN fea-
tures are superior to those obtained using shallow features,

e.g., SIFT [16]. We quantitatively evaluate the features stand-
alone, as well as compare the final shape inference results
using shallow and deep CNN features. We note an average
improvement in the shape inference of roughly 1 pixel per
shape dimension compared to the previous work.

The task of shape estimation from hand radiographs is
related to non-medical shape estimation tasks, for example
the task of facial landmark localization [7], [8], [26]. Recent
approaches for this task, and other similar tasks, propose
deep learning architectures that are suitable for end-to-end
optimization. Our task is potentially well suited for end-to-
end optimization, but existing sets of hand radiographs are
significantly smaller than those available for other domains.
This leads to significant problems with overfitting, which
motivated our hybrid approach of using deep learning for
low-level features but CRF optimization for top-down infer-
ence. We expect that by combining our proposed techniques
with larger datasets and end-to-end learning we will be able
to make further advances in future work. Upon acceptance of
this paper, we will release our fully trained models as well as
source code that implements CRF optimization.
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