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Fig. 1: Registration pipeline based on X-ray simulation and CMA-ES.

Abstract. Radiographs of the hand are useful in diagnosing and staging
diseases such as rheumatoid arthritis (RA) and other musculoskeletal
diseases. Radiographs are projections of the 3D anatomy, with the useful
information such as pose and pathology becoming lost in the process.
We propose a 3D hand pose recovery method for radiographs of hands
using a novel hybrid image registration method. Our pose recovery
pipeline consists of aligning a simulated X-ray (digitally reconstructed
radiograph) of an articulated phantom mesh model to a real hand
radiograph using Covariance Matrix Adaptation Evolution Strategy.
Early results demonstrate that our approach works well. Further inquiry
is required to evaluate the applicability of our registration approach to
other articulated musculoskeletal anatomy.

Keywords: 2D–3D registration · X-ray simulation · artificial evolution
· evolutionary computing · CMA-ES · DRRs.

1 Introduction

Computational methods of disease tracking and progression prediction based on
the analysis of medical imagery is receiving heightened attention in recent years.
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Fig. 2: a) Erosions induced by RA inflammatory processes visible around the red
asterisks. Image source [19]. b) Naming of hand fingers and bones. Source: The
MURA dataset.

Chronic diseases of the human musculoskeletal system caused by autoimmune
processes lead to progressive, irreversible anatomical changes over time. In the
case of rheumatoid arthritis (RA), a chronic inflammatory disorder with largely
unknown pathogenesis, patients often present to the clinician with swelling of
the hands. If left untreated, the disease progresses in distinct stages, from joint
pain, swelling, stiffness to cartilage loss, bone erosion, deformities and total loss
of joint function [15].

Plain radiographic imaging (X-rays) of the hands is done routinely for
diagnostic and tracking purposes, as routine care for RA patients. Since hand
radiographs are relatively inexpensive and low-risk, they provide clinicians with
baselines, and visible changes over time. The rate of disease progression is
modulated by treatment and lifestyle choices, but distinct deformations have
been documented [17,19]. Typical deformities include boutonnière, swan-neck,
hitchhiker’s thumb and claw toe, Other, less obvious changes include bone
erosions, induced by the inflammation of the synovial membrane, as shown in
Figure 2a.

Radiographs are projections of 3D structures, hence much information is lost.
The anatomy of the hand varies among different individuals, e.g. the ratio of the
lengths of the long bones is not always consistent. Using this observation and
the ability to speedily create digitally reconstructed radiographs (DRRs), we
propose a method to register a 3D mesh model of a hand to Posterior Anterior
(PA) view hand radiograph.

Anomaly detection in hand radiographs is important for disease staging and
monitoring. Our registration method is a pre-processing step for algorithms
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that modify the mesh model using domain-specific knowledge to better track
disease-induced changes without expensive volumetric scans that clinicians
may not be equipped with or are cost-prohibitive. Time-series, patient-specific
information regarding the progression of a disease is critical for treatment
planning and drug effectiveness monitoring.

Our main contribution consists of a novel registration method of a highly
articulated and anatomically correct 3D mesh model, hereby referred to as
the phantom model, to a real radiograph using a DRR software (https:
//sourceforge.net/p/gvirtualxray/) [21,22]. Our proposed optimisation
process (inside green box in Figure 1) consists of using an evolutionary algorithm
to solve for the articulated 3D pose of the virtual hand that best fits the real
radiograph. Similar works on 3D/2D registration using Evolutionary Algorithms
(EAs) are presented by Gomez et al. [9,8]. We use Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [12] from Pymoo [3] as the numerical optimisation
algorithm. This paper is based on previous work where synthetic data were
used [25]. The paper is organised as follows: Section 2 provides an overview
of related work, Section 3 describes our method, including the data used and
data pre-processing, Section 4 describes our results as well as quantitative and
qualitative evaluation, Section 5 provides conclusions and describes future work.

2 Background

Medical image registration is important for pathology modeling, treatment
and surgery planning, diagnosis and prognosis, among other tasks. Work in
this area has focused on all imaging modalities, including projective (X-rays)
and volumetric, either from computed tomography (CT) or magnetic resonance
imaging (MRI), and a combination 2D to 3D and 3D to 3D registration. The
medical image literature is vast, and we refer the interest reader to several review
papers [23,24,1].

Registration of DRRs of articulated objects to real radiographs is scarcely
investigated. Related work in this area falls into several categories: 2D
radiograph to 3D volumetric scan registration [7,5], biplanar radiograph to model
registration [14,4,2].

Kanhonou et al. [14] propose a method for automatic registration of phantom
tibia and femur to biplanar radiographs for pathology detection using rigid
transformations as the optimisation variables. Englander et al. [4] propose a
vision-based method for in-vivo registration of phantom tibia and femur models
to high-speed biplanar radiographs to study Anterior Cruciate Ligament (ACL)
length and strain during dynamic activity. Aubert et al. [2] propose a spine
reconstruction method using deep convolutional neural networks (CNNs) from
biplanar radiographs.

Our work fits in a hybrid paradigm: the registration of a DRR from a
phantom model (3D triangular mesh model) using simulated radiography to
a real radiograph (a single 2D image). Our work aligns most closely with that of

https://sourceforge.net/p/gvirtualxray/
https://sourceforge.net/p/gvirtualxray/
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Gong et al. [10] who register phantom models in DRRs to fluoroscopy imagery
for treatment planning in complex bone fractures. In contrast with [10] where
the registration involves a rigid body transform, we register a highly articulated
mesh model of a hand.

We also propose an automatic method for the registration of a hand phantom
to a single radiograph using rigid transformations (translation, rotation and
scaling) as the optimisation variables. Due to the repetitive use of DRR
calculations by the optimisation algorithm, an extremely fast implementation is
needed. DRR calculation codes often rely on CT scans data as input. They can
be implemented using graphics processing unit (GPU) programming to speedup
computations [6]. Polygon meshes can be converted into voxel data; this is called
voxelisation [13]. However, as the hand model is deformed by the optimisation
algorithm for each DRR, this approach will be far too costly and can actually be
avoided. The alternative is to use a fast X-ray simulation model that can support
polygon meshes [16]. It can be efficiently implemented on GPU using real-time
Computer Graphics (CG) techniques. This approach is the most suitable one
in our application context as real-time CG techniques are designed for polygon
meshes. The Virtual X-ray Imaging Library on GPU (gVirtualXRay) provides
an open-source implementation that can run on laptops, desktop computers,
and large supercomputers. gVirtualXRay is a C++ library to simulate X-ray
imaging [22]. It also provides a Python 3 wrapper that we used to prototype our
framework in this study.

3 Methodology

3.1 The MURA Dataset

The MURA dataset, freely available on GitHub at https://stanfordmlgroup.
github.io/competitions/mura/, contains 40,561 musculoskeletal radiographs
from 14,863 clinical studies of 12,173 different patients [18]. It focus on upper
extremities of human body, including elbow, finger, forearm, hand, humerus,
shoulders and wrist. Each radiograph is manually labelled as normal or
abnormal. 15 radiographs (Figure 3) are selected to test the performance of
our approach (Section 4.1), which only require a single radiograph.

Unlike typical medical images such as Digital Imaging and Communications
in Medicine (DICOM) [11], radiographs in the MURA dataset are in Portable
Network Graphics (PNG) format which a lot of information is missing (Table 1).
To adapt data to use in our experiments, those radiographs are pre-processed
to improve the structural difference between the object and other areas. More
discussion about image pre-processing in Section 3.2.

https://stanfordmlgroup.github.io/competitions/mura/
https://stanfordmlgroup.github.io/competitions/mura/
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Fig. 3: 15 selected hand radiographs from MURA dataset. Images are numbered
from image 1 (top left) to image 15 (bottom right). Top row: image 1-5, middle
row: image 6-10, and bottom row: image 11-15.

3.2 Image pre-processing

Although the MURA dataset was created for the purpose of abnormality
detection, it is also useful for testing the performance of our registration
framework. We focus on hand radiographs with PA views. We manually
pre-processed 15 different radiographs as follow: i) each radiograph is cropped
so that only the hand part remains, ii) the left or right marker is removed and
the area surrounding the hand is “cleaned” (to have same pixel values), iii) the
skin around finger is removed as much as possible, iv) the radiographs, which are
negative images, are inverted to match the positive images generated by X-ray
simulation, and v) all images are re-scaled to the same size of simulated X-ray
images. Corresponding images are shown in Figure 4. In each image, we define
the name of each finger (from left to right): thumb, index finger, middle finger,
the fourth finger and little finger, as shown in Figure 2b.
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Table 1: Information needed to simulate X-ray radiographs that are present in
typical medical imaging file formats such as DICOM but missing in the PNG
files from the MURA dataset.

Properties PNG DICOM

X-ray tube voltage plausible energy beam known

Quantisation 8-bit 16-bit

source-to-object distance (SOD) need to estimate known

source-to-detector distance (SDD) need to estimate known

Pixel spacing (mm) need to estimate known

Object location need to estimate known

Object orientation need to estimate known

3.3 gVirtualXRay

In order to simulate an X-ray image (inside blue box of Figure 1), some input
parameters are needed:

– An incident energy beam,
– A 3D object to scan, including its geometry, position, and orientation.
– A virtual X-ray detector, including its pixel resolution, pixel spacing, and

orientation.
– The source-to-object distance (SOD),
– The source-to-detector distance (SDD).

All these parameters must be set before a DRR can be generated. Some of
them can be set once for all, such as the incident energy beam, the detector’s
resolution and orientation, and pixel spacing. As mentioned above, the actual
values are unknown due to the use of PNG files instead of DICOM files in the
MURA dataset. We used plausible values. The registration consists in tuning all
the other parameters.

3.4 Optimisation

CMA-ES [12] is a widely used optimisation algorithm which provides a
great baseline result. Other optimisation algorithms could be used for
further evaluations of our approaches such as multi-objective optimisation
algorithms [20]. CMA-ES is a special evolution strategy with adaption
of covariance matrix. It is used to solve complex problems that require
derivative-free optimisation. An evolution strategy is inspired by biological
evolution. The idea is: initialising individuals (a set of solutions), recombination
and mutation is used to create new individuals, best individuals are then
selected based on their fitness value to become the parents of next generation of
individuals. This process is repeated until satisfactory results (set termination
criterion) are found. In Evolution Strategies (ES), new individuals are created
by sampling from the probability distribution. In CMA-ES, however, sampling



3D-2D Registration using X-ray Simulation and CMA-ES 7

Fig. 4: 15 selected hand radiographs from the MURA dataset after
pre-processing. Images are numbered from Image 1 (top left) to Image 15
(bottom right). Top row: Images 1-5, middle row: Images 6-10, and bottom
row: Images 11-15.

is achieved through the use of a covariance matrix of the distribution. This gives
CMA-ES great advantages in the ill-conditioned problems which small changes
of input variables result in large change of output. The optimisation process is
shown in Figure 1 (green box).

Before thoptimisation, all images are normalised to have zero-mean and
unit-variance. This is to prevent that some features becoming too dominant
during optimisation while other features would be less relevant. We use Mean
absolute error (MAE) to construct the objective function, i.e. as the fitness
function to be minimised by CMA-ES. MAE is the sum of absolute errors
between samples and then divided by total number of samples (Eq. 1). The best
number can be achieved is zero. Typically, lower MAE value indicates better
optimising result.

MAE(Y, Ŷ) =
1

w × h

h∑
j

w∑
i

∣∣∣Ŷ(i, j) − Y(i, j)
∣∣∣ (1)
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Table 2: Rotation and re-scaling parameters to be optimised and corresponding
ranges.

Parameters
Bones Whole

hand
Thumb Index Middle Fourth Little

Rotation range
(degrees)

[-20, 20]
MCt: [−10, 10]

[−20, 0]
PPt: [−10, 10]

PPi:
[−10, 10]
[−20, 0]

IPi:
[−20, 0]

DPi:
[−20, 0]

PPm:
[−10, 10]
[−20, 0]

IPm:
[−20, 0]
DPm:

[−20, 0]

PPf:
[−10, 10]
[−20, 0]

IPf:
[−20, 0]

DPf:
[−20, 0]

PPl:
[−10, 10]
[−20, 0]

IPl:
[−20, 0]

DPl:
[−20, 0]

Rescaling ratio - [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1]

where Y is the target image, Ŷ is the predicted image, w and h are width
and height of target and predicted images, respectively.

Our registration problem is considered to be complex both in terms of number
of parameters and the corresponding data range. There are 38 parameters that
need to be optimised including 2 distance parameters: SOD and SDD. SOD is
a ratio of SDD with a value between 0.7 and 0.95. By using ratios, we make
sure that the distance between the source and the object, is always less than
the distance between the source and the detector. SDD ranges between 10 and
1000 centimetres. There are 22 rotating angles and 14 rescaling factors, which
are shown in Table 2. The rotation range is determined based on the modelling
of rotations of the real hand except the whole hand, which is determined by a
priori knowledge of the PA pose but adding some degrees of complexity. There
are no constraint handlers implemented in our framework since our work is still at
preliminary stage. Further improvements of registration results would certainly
involves modelling restrictions among parameters.

Table 3: Registration results for 15 different target images along with
corresponding metric values.

Image number
& Metrics

Target Prediction Error map
Number of objective

function calls

1
& MAE=0.3937
ZNCC=0.7060

2050

2
& MAE=0.3497
ZNCC=0.7378

1964

Continued on next page
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Table 3 – continued from previous page
Image number

& Metrics
Target Prediction Error map

Number of objective
function calls

3
& MAE=0.4060
ZNCC=0.7264

1934

4
& MAE=0.3953
ZNCC=0.7051

2056

5
& MAE=0.4398
ZNCC=0.6603

2050

6
& MAE=0.3947
ZNCC=0.7179

2056

7
& MAE=0.4029
ZNCC=0.7012

2055

8
& MAE=0.3765
ZNCC=0.7202

1886

9
& MAE=0.4356
ZNCC=0.6130

2119

10
& MAE=0.4790
ZNCC=0.6503

2308

Continued on next page
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Table 3 – continued from previous page
Image number

& Metrics
Target Prediction Error map

Number of objective
function calls

11
& MAE=0.4167
ZNCC=0.7094

2186

12
& MAE=0.4073
ZNCC=0.7156

1817

13
& MAE=0.3903
ZNCC=0.7218

2016

14
& MAE=0.4464
ZNCC=0.6535

1898

15
& MAE=0.4206
ZNCC=0.7409

2027

4 Results

There are two ways to assess the effectiveness of our method in solving the
registration problem. In any case, several runs must be performed to gather
statistically meaningful data. In Section 4.1, we selected 15 different radiographs
and tested our method once on each of the radiographs. The emphasis is on
data and simulation variability: For different input images, does the
algorithm always provide outputs of similar quality? In Section 4.2, we
selected the images of the worse, median and best registrations of Section 4.1.
The registration is then repeated 15 times for these three images. The emphasis
is on optimisation algorithm variability: For a given input image, does
the algorithm always provide a similar output? We also aim to determine
if some images harder to register than others.
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4.1 Data and simulation variability

Here, we aim to determine if the algorithm always provide outputs of similar
quality on different input images. 15 registrations using 15 different real X-ray
images were performed, i.e. one registration per image, due to computational
demand (about 4 hours per registration on a single Intel Core i5-8400 (2.80GHz)
central processing unit (CPU) and a single NVIDIA GeForce GTX 1070 Ti
GPU). The 15 pre-processed images that we used are shown in Figure 4. MAE
is used to compare target and predicted images during registration because it
is relatively faster to compute. Zero mean normalised cross correlation (ZNCC)
is used for visual analysis of the predicted images after registration. It is a
measurement of similarity between two images. Since it is hard to interpret
the value of MAE, ZNCC is very helpful to analyse the performance of the
registrations.

To compute ZNCC, the target and predicted images are normalised first,
which is subtracting all pixels by the mean value and divided by standard
deviation. Normalised target and predicted images are then multiplied. Finally,
all values are added and divided by total number of pixels (see Eq. 2). ZNCC
primarily concentrates on template matching and completely different images
might have very high scores.

ZNCC
(
Ŷ,Y

)
=

1

w × h

h∑
j

w∑
i

(
Ŷ − Ŷ

) (
Y − Y

)
σŶσY

(2)

where Y and Ŷ are mean pixel value of target and predicted images, and σY and
σŶ are standard deviation of the pixel values in target and predicted images.

ZNCC ranges from -1 to 1, where i) the value is close to 1, the two images
are highly similar which implies high level of correlation, ii) the value is 0, two
images are extremely different which implies there is no correlation, iii) the
value is -1, one image is the negative of the other image which implies they are
anti-correlated or inversely correlated.

Table 3 lists results from 15 registrations. By looking at predictions and
associated error maps, there are 6 registrations that successfully recovered all 5
fingers, where ZNCC is all above 0.7. There are 6 registrations that successfully
recovered 4 fingers, where ZNCC is all above 0.7 except image 14. There are 3
registrations that recovered 1 finger, where ZNCC is all below 0.7. It is clear from
Table 3 that Images 5, 9, 10 and 14 are visually worse than the other images.
This trend is not necessarily visible in Figure 5a (bar chart of the MAE for each
registration). However, Figure 5b clearly show two groups: Images 5, 9, 10 and
14 exhibit a significantly lower ZNCC than the other images.

Results demonstrate that our approaches perform well. However, there are
some problems that need to be addressed in future researches:

1. Some fingers are not within images. For example, Registration 4, 12 and 14
have the middle finger extended outside the image space. Registration 10
has middle finger and fourth finger extended outside the image space.
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2. In 3 registrations (5, 9 and 10) only the thumb is recovered, the middle finger
is matched with the target’s index finger, the fourth finger is matched with
the target’s middle finger, and the little finger is matched with the target’s
fourth finger.

3. A finger is overlapped with another finger. In Registration 4 and 8, the little
finger is overlapped with the fourth finger. In Registration 9, the index finger
is overlapped with middle finger.

4.2 Optimisation algorithm variability

Here, we aim to determine if the algorithm always provides outputs of similar
quality on the same input image. We selected the best, median and worse results
from the previous subsection, i.e. Images 2, 3, and 10. We perform another
14 registrations on each image and included their previous results (i.e. a total
of 15 results per image) to test the variability of the algorithm, CMA-ES, when
the input data is the same. Then we compute the mean and standard deviations
(STDEVs) of MAE, ZNCC and number of calls to objective function over the
15 runs. The data is summarised in Table 4. It shows that CMA-ES provides
registrations of consistent quality, both in terms of MAE and ZNCC, for Images 2
and 3 (low standard deviations). However, the standard deviations are much
higher for Image 10 (the worse registration of Section 4.1). The MAE is higher
than for the other two images, and the ZNCC lower. It indicates that, somehow,
Image 10 is a lot harder to register than Images 2 and 3. The scatter plot in
Figure 6 shows the MAE (circles) and ZNCC (triangles) plotted as a function
of the number of generations. Green and purple marks are aligned and form
horizontal lines: CMA-ES produces consistent registrations for Images 2 and 3.
Blue marks are scattered over the plot: CMA-ES does not produce consistent
registrations for Image 10.

CMA-ES can produce registrations of good quality consistently for some
images. For other images, CMA-ES may fail. Further research is needed to
comprehend what makes Image 10 hard to register compared to Images 2 and 3
as the three images are visually similar.

Table 4: Results for 15 registrations on Images 2, 3 and 10.

Image number
MAE

(mean ± STDEV)
ZNCC

(mean ± STDEV)

Number of objective
function calls

(mean ± STDEV)

2 (best run in Table 3) 0.3460± 0.0055 0.7426± 0.0074 2105± 189

3 (median run in Table 3) 0.4076± 0.0019 0.7227± 0.0035 1954± 132

10 (worse run in Table 3) 0.4701± 0.0218 0.6597± 0.0184 2137± 162
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Fig. 5: Bar charts for quantitative results shown in Table 3. All data is sorted on
MAE and the median result is highlighted in red.
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Fig. 6: Scatter plots of results for 15 registrations on Image 2, 3 and 10.

5 Conclusions and Future work

We have shown the feasibility of using DRRs to register an articulated
phantom model to real hand radiographs without visible pathology. Our
registration framework heavily relies on numerical optimisation. We used
CMA-ES, a popular evolutionary algorithm for non-linear or non-convex
continuous optimisation problems. Performing the registration on different X-ray
images showed that results were not always of the same quality. However,
CMA-ES produces similar results with low variability during 15 runs on the
same image. This demonstrate that the stochastic nature of CMA-ES is not a
concern in our case. It also indicates that some images are harder than others
to register.

In the future, we will use this work as an initialisation step in a pipeline that
tweaks the geometry of a phantom model to match the pathology seen in real
radiographs, such as those afflicted by RA. This will allow clinicians access to
clean (already segmented) volumetric rendering of pathological skeletal anatomy
without the high doses of ionising radiation typically associated with CT scans,
or where there is no access to volumetric scans.

We are also planning to address some of the problems discussed in previous
section:

– We can pad white spaces (same pixel values as background) around images
to make them bigger. The alternative way is to impose constraints on
parameters where fingers are not allowed to extend outside images.

– There are some images (e.g. Image 5) where fingers are mis-matched or
overlapped. We can look into multi-objective optimisation algorithms with
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both MAE and ZNCC as objectives. ZNCC is very helpful for shape
matching. The algorithm are working by minimising MAE and maximising
ZNCC in the same time.
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