Chapter 9 Notes – Composite Pattern

Definition & Use

1. “The Composite Pattern allows you to compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.”[HFDP, 356][GOF, 163]

2. “The Composite pattern allows you to build complex objects by recursively composing similar object in a tree-like manner. The Composite pattern also allows the object in the tree to be manipulated in a consistent manner, by requiring all of the objects in the tree to have a common interface or superclass.” [PIJ-1, 187]

3. Use the Composite pattern when:

1. You have a complex object that can be broken down into a part-whole hierarchy of smaller objects.

2. The majority of the relationships do not need to be distinguished. In other words, mostly, the client doesn’t need to know the concrete classes and all manipulation can be carried out through the interface.

4. General UML, two choices (a third choice is shown later):

	Book’s Approach
	
	Another Approach

	[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\a3.jpg]
	
	
[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\a2.jpg]

	

Examples

1. File systems are organized with the Composite pattern. HTML elements are also.
[image:]
2. Consider the organization of a document composed of a number of components.

[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\c3.gif]

This can be organized using the Composite pattern.

[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\c5.gif]

5

Text Example

1. How does a menu get its list of components? There are three design options and three factors to consider:

a. Flexibility – Can we modify the menu?
b. Transparency – Do we have to know concrete classes?
c. Safety – Can unsupported operations be called?

	Approach
	1
	2
	3

	Structure
	[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\bb1.jpg]
	[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\bb2.jpg]
	[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\bb3.jpg]

	Flexibility
	 Menu’s cannot be changed
	 Menus can be changed
	 Menus can be changed

	Transparency
	 All items can be referred to as MenuComponents
	 Must know class
	 All items can be referred to as MenuComponents

	Safety
	
	
	 It is possible to call the add method on a MenuItem

2. These three options demonstrate that a composite often has to decide between flexibility, transparency and safety when components are created. You can get any two of the three properties, but not all three.

For some reason, the text only mentions the third technique. However, this is not the common choice.

Java AWT Package

1. [bookmark: _GoBack]The designers of the Java AWT classes chose the second technique. The add method is in the Container class. Thus, to add a Component to a Container, you must know that the Container is a Container. So, you can’t add a Button to a Button (safety?). However, in Swing, a JButton is a Container, so you can add a JButton to a JButton (see next example).

[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\aa2.jpg]

2. As mentioned above, Swing makes all controls Containers. This design allows us create recursive menus and buttons with embedded buttons and radio buttons.

	[image: E:\Data-Classes\CS 4322 - Software Engineering 2\Notes\09-Iterator&Composite\pics\aa3.jpg]
	[image:]

1. – JavaFX – The Scene Class Hierarchy

1. The figure below shows the framework for building a JavaFX GUI, which utilizes the second technique from above. Note that a Scene can contain a Pane, but in general, the association is more general; the Scene has an association with the Parent class of which Pane is a subclass. Note, also that a Pane can have many Node instances where each Node instance can be a GUI Control, another Pane, or other items such as a MediaView object.

[image: Description: E:\Data-Classes\CS 1302 - Programming 2\notes\07_ch14_GUI\j2.jpg]

image4.gif
Document

1

Character

image5.gif
Character

interface

IDocumentElement

CompositeDocumentElement

A

Document

Page

Column

Frame

LineOfText

image6.jpeg
MenuComponent

Menultem Menu

Menu(name) Menu(name,

list_of_components)

image7.jpeg
MenuComponent

Menultem Menu

Menu(name) Menu(name)

add(c:MenuComponent)

image8.jpeg
MenuComponent %
add(c:MenuComponent) €+

i

Menultem Menu

Menu(name) Menu(name)

image9.jpeg
java.awt

[TextComponent | [Label | [Button][Container
A

TextField

javax.swing

| ScroIIPanell Panel

H Window |

I Frame

|| Dialog I
A

FileDialog

1' JFrame

JTextComponent

JTextField

JLabel

Tree

List

AbstractButton

AN

image10.jpeg
Container

* *
W JMenu H JMenultem

image11.png
) GUIDemo

© Pathfinder O Xterra

image12.jpeg
Application |-, Window
start(s:Stage) '-‘

Stage ——>{Scene]

setScene(s:Scene)
show()

MyApplication

Node |<

Canvas | [ImageView | |MediaView | |Shape | |Parent

Control
ListView I——| ComboBoxBase | | Labeled Chart
@ ColorPicker E Label
@I ComboBox ButtonBase PieChart | BorderPane
ToolBar LS XYChart | GridPane
TabPane TextInputControl Button

HBox
StackPane

—{CheckBox

TextArea

—{Hyperlink

VBox

MenuButton

ToggleButton
JAN

image1.jpeg
Component

behavior()
add(c:Component)
remove(c:Component)
getChildren():Component([]

image2.jpeg
Component
behavior()

I Leaf | Composite

add(c:Component)
remove(c:Component)
getChildren():Component([]

image3.png
% supervises

Employee

1T oua

contains

FileSystemltem —‘

r—‘—\‘”

Secretary

Technician Manager

File

Directory

