Testing Example
ECT & C-P

This example will use the spirit of ECT and C-P to develop several unit tests.

Problem Statement

Consider this problem from CS 1302.

	You will write a class named Employee that keeps track of the hours worked on each day of the week. The class will have the following members:

a. hours – a double array with 7 elements. This holds the hours worked on each day of the week. Monday (index=0) is the first day of the week.
b. name – a string containing the name of the employee
c. payRate – a double which represents the pay rate ($/hr)
d. Employee(name:String, payRate:double) – constructor that accepts a name for the employee and their pay rate ($/hr). The name must have a length greater than zero and the pay rate must be greater than zero; otherwise, a RuntimeException is thrown.
e. getHours(i:int) – returns the number of hours worked on day i.
f. getName – returns the name
g. getNumDaysWorked – returns the number of days worked.
h. getPay – returns the total pay for the week computed in the following way:
· Weekday hours (Mon-Fri) are paid at the pay rate. Any hours over 40 during weekdays are paid at time-and-a-half.
· Weekend hours are paid at double-time, no matter whether the workday hours exceeds 40.
· Working 7 consecutive day earns a bonus of $50.00, no matter how many total hours worked.
i. getPayRate – returns the pay rate
j. getTotalHours – returns the total number of hours worked for the week
k. getWeekdayHours – returns the total number of hours worked during weekdays (Mon-Fri)
l. getWeekendHours – returns the total number of hours worked during the weekend (Sat-Sun)
m. mergeEmployee – accepts an Employee object and merges the hours. You can assume the input employee has the same name and pay rate. For example if e1 had hours: [8,8,8,2,0,0,0] and e2 had hours: [0,0,0,4,10,0,0]. Then, when e1.mergeEmployee(e2) is excecuted, the e1 will have hours: [8,8,8,6,10,0,0].
n. newWeek – starts the week over by setting 0 hours for each day
o. setHours(i:int,num:double) – sets the number of hours worked on day i.
p. toString – returns a string that is formatted like this…

Unit Test for Constructor

Employee(name:String, payRate:double)

1. Input, Categories, and Choices

Inputs
· Name – length
	=0	ERROR
	>0
· Pay rate – value
	<0	ERROR
	=0	ERROR
			>0	

2. Test Specification

	Num
	Name
	Pay rate

	1
	=0
	>0

	2
	>0
	<0

	3
	>0
	=0

	4
	>0
	>0

3. Test Cases

	Num
	Name
	Pay rate
	Expected Result

	1
	“”
	50.0
	Exception

	2
	“Markus”
	-10.0
	Exception

	3
	“Markus”
	0.0
	Exception

	4
	“Markus”
	50.0
	Getters produce correct result

4. Test Cases

@DisplayName("Constructor: Empty string")
@Test
void testConstructorEmptyString() {
	Assertions.assertThrows(RuntimeException.class, () -> {new Employee("",50.0);});
}
@DisplayName("Constructor: Payrate <0")
@Test
void testConstructorPayrateLess0() {
	Assertions.assertThrows(RuntimeException.class, () -> {new Employee("Markus",-10.0);});
}

@DisplayName("Constructor: Payrate =0")
@Test
void testConstructorPayrateEqual0() {
	Assertions.assertThrows(RuntimeException.class, () -> {new Employee("Markus",0.0);});
}

@DisplayName("Constructor: saves instance vars")
@Test
void testConstructorNormal() {
	Employee e = new Employee("Markus", 50.0);
	assertEquals("Joe",e.getName());
	assertEquals(10.0,e.getPayRate());
}

Unit Test for getPay()

getPay():double

1. Reread the specification for this method. Exactly what is the input for this method? I decided: the hours array and the payRate which is not really a factor since we already tested that it is >0. Thus, the equivalence class/choice for pay-rate is simply: >0. So, a single pay rate will suffice.

2. For the hours array, initially, I decided on this:

	
	Category

	
	Over-time
	Hours
	Work Period
	Days Worked

	Choices
	Yes, No
	<40, =40, >40
	WD, WE, WD+WE
	1,2,4,5,6,7

After some analysis I decided I was missing something. So, I started over.
3. This time, I focused on the combinations of over-time pay, double-time pay, and 7-day bonus pay.

	
	Category

	
	Over-time Pay
	Double-time Pay
	7-Day Bonus Pay

	Choices
	No, Yes
	No, Yes
	No, Yes

This lead to the following combinations:

	Num
	OT
	DT
	7-Day
	Comment

	1
	N
	N
	N
	

	
	N
	N
	Y
	Not Possible

	2
	N
	Y
	N
	

	3
	N
	Y
	Y
	

	4
	Y
	N
	N
	

	
	Y
	N
	Y
	Not Possible

	5
	Y
	Y
	N
	

	6
	Y
	Y
	Y
	

I decided that this was one category for hours with 6 possible choices. I’ll call this category: Pay Source (PS)

4. Next, I decided on four more categories for hours and their choices:

· WDH – Week-day hours worked: {<40, =40, >40}
· WDW – Week-days worked: {0,4,5}
· WEH – Week-end hours worked: {0,>0}
· WEW – Week-end days worked: {0,1,2}

Thus, with all 5 categories, there are 6*3*3*2*3 = 324 combinations. However, many of them aren’t possible.

5. After analyzing combinations of these factors, I realized that I don’t need WEH: it is always 0 unless WEW>0. We do need WDH so that we can see the difference in NYY and YYY, and other cases.

6. Thus, the four categories for hours and their choices:

· PS – Pay Source {NNN, NYN, NYY, YNN, YYN, YYY}
· WDH – Week-day hours worked: {<40, =40, >40}
· WDW – Week-days worked: {0,4,5}
· WEW – Week-end days worked: {0,1,2}

Thus, there are 6*3*3*3 = 162 combinations. Still, many of them aren’t possible.

7. TSL File:

#Week Days Worked
Value:
 0. [property WDW=0]
 4. [property WDW=4]
 5. [property WDW=5]
#Week Day Hours
Value:
 <40.
 =40. [if !WDW=0]
 >40. [if !WDW=0][property WDH>40]
#Weekend Days Worked
Value:
 0. [property WEDW=0]
 1. [property WEDW=1]
 2. [property WEDW=2]
#PaySource
Type:
 NNN. [if !WDH>40 && WEDW=0]
 NYN. [if !WDH>40 && ((WDW=4 && (WEDW=1 || WEDW=2)) || (WDW=5 && WEDW=1))]
 NYY. [if !WDH>40 && WDW=5 && WEDW=2]
 YNN. [if (WDH>40 && !WDW=0) && WEDW=0]
 YYN. [if (WDH>40 && ((WDW=4 && (WEDW=1 || WEDW=2)) || (WDW=5 && WEDW=1)))]
 YYY. [if WDH>40 && WDW=5 && WEDW=2]

When this file is run with TSL, there are 21 test frames.

8. Test Frames

	Test Case 1 		(Key = 1.1.1.1.)
 Value : 0
 Value : <40
 Value : 0
 Type : NNN

Test Case 2 		(Key = 1.1.2.0.)
 Value : 0
 Value : <40
 Value : 1
 Type : <n/a>

Test Case 3 		(Key = 1.1.3.0.)
 Value : 0
 Value : <40
 Value : 2
 Type : <n/a>

Test Case 4 		(Key = 2.1.1.1.)
 Value : 4
 Value : <40
 Value : 0
 Type : NNN

Test Case 5 		(Key = 2.1.2.2.)
 Value : 4
 Value : <40
 Value : 1
 Type : NYN

Test Case 6 		(Key = 2.1.3.2.)
 Value : 4
 Value : <40
 Value : 2
 Type : NYN

Test Case 7 		(Key = 2.2.1.1.)
 Value : 4
 Value : =40
 Value : 0
 Type : NNN

Test Case 8 		(Key = 2.2.2.2.)
 Value : 4
 Value : =40
 Value : 1
 Type : NYN

Test Case 9 		(Key = 2.2.3.2.)
 Value : 4
 Value : =40
 Value : 2
 Type : NYN

Test Case 10 		(Key = 2.3.1.4.)
 Value : 4
 Value : >40
 Value : 0
 Type : YNN

	Test Case 11 		(Key = 2.3.2.5.)
 Value : 4
 Value : >40
 Value : 1
 Type : YYN

Test Case 12 		(Key = 2.3.3.5.)
 Value : 4
 Value : >40
 Value : 2
 Type : YYN

Test Case 13 		(Key = 3.1.1.1.)
 Value : 5
 Value : <40
 Value : 0
 Type : NNN

Test Case 14 		(Key = 3.1.2.2.)
 Value : 5
 Value : <40
 Value : 1
 Type : NYN

Test Case 15 		(Key = 3.1.3.3.)
 Value : 5
 Value : <40
 Value : 2
 Type : NYY

Test Case 16 		(Key = 3.2.1.1.)
 Value : 5
 Value : =40
 Value : 0
 Type : NNN

Test Case 17 		(Key = 3.2.2.2.)
 Value : 5
 Value : =40
 Value : 1
 Type : NYN

Test Case 18 		(Key = 3.2.3.3.)
 Value : 5
 Value : =40
 Value : 2
 Type : NYY

Test Case 19 		(Key = 3.3.1.4.)
 Value : 5
 Value : >40
 Value : 0
 Type : YNN

Test Case 20 		(Key = 3.3.2.5.)
 Value : 5
 Value : >40
 Value : 1
 Type : YYN

Test Case 21 		(Key = 3.3.3.6.)
 Value : 5
 Value : >40
 Value : 2
 Type : YYY

9. [bookmark: _GoBack]Summary of Test frames.

		Num
	PS
	WDH
	WDW
	WEW

	1
	NNN
	<40
	0
	0

	2
	
	<40
	4
	0

	3
	
	<40
	5
	0

	4
	
	=40
	4
	0

	5
	
	=40
	5
	0

	Num
	PS
	WDH
	WDW
	WEW

	6
	NYN
	<40
	0
	1

	7
	
	<40
	0
	2

	8
	
	<40
	4
	1

	9
	
	<40
	4
	2

	10
	
	<40
	5
	1

	11
	
	=40
	4
	1

	12
	
	=40
	4
	2

	13
	
	=40
	5
	1

		Num
	PS
	WDH
	WDW
	WEW

	14
	NYY
	<40
	5
	2

	15
	
	=40
	5
	2

	Num
	PS
	WDH
	WDW
	WEW

	16
	YNN
	>40
	4
	0

	17
	
	>40
	5
	0

	Num
	PS
	WDH
	WDW
	WEW

	18
	YYN
	>40
	4
	1

	19
	
	>40
	4
	2

	20
	
	>40
	5
	1

	Num
	PS
	WDH
	WDW
	WEW

	21
	YYY
	>40
	5
	2

10. Next, you would have to construct the array for each of these 13 cases and write unit-tests.

6

