JUnit

Introduction

1. Unit Testing is a method for testing an individual class and unit tests are usually written by the developer. 

2. When a pull request is initiated unit tests must be present and passed before being merged.

3. How do you test a class with an association to another classes? There are two approaches: sociable tests and solitary tests. For example, suppose class A has-a B. A sociable unit testing approach has unit tests for class B and when they pass, unit tests for class A are written using the actual B class. Solitary tests may have unit tests for B, but the unit tests for A use a test double (2) for B. A test double is an object(s) that looks and behaves like their release-intended counterparts, but are actually simplified versions that reduce the complexity and/or resources needed for testing. For now, we will only consider sociable unit testing.

Source: https://martinfowler.com/bliki/UnitTest.html

4. JUnit 5 (also called JUnit Jupiter) is a framework for doing unit testing in Java. JUnit 5 support is available in Eclipse Oxygen 4.7.1a or higher. A JUnit test is a class with methods that test another class(es). If the class you are testing is MyClass then typically, the name of the test class is MyClassTester.

Example 1

1. Suppose we have an Employee class with a method:

public double getPay(double hours) {
	if(hours>0.0)
		return hours*payRate;
	return 0.0;
}

2. To create a JUnit test class in Eclipse, choose: File, New, JUnit Test Case (make sure New JUnit Jupiter test is selected), give it a name, and choose: Finish.

3. For example, the test class might look like this:

import static org.junit.jupiter.api.Assertions.*;

import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;

class EmployeeTester {

	@Test
	@DisplayName("getPay with hours greater than zero")
	void test_getPay_positive_hours() {
		Employee e = new Employee(20.0);
		double actualPay = e.getPay(40.0);
		double expectedPay = 800.0;
		assertEquals(expectedPay, actualPay);
	}

	
@Test
	@DisplayName("getPay with hours less than zero")
	void test_getPay_negative_hours() {
		Employee e = new Employee(20.0);
		double actualPay = e.getPay(-40.0);
		double expectedPay = 0.0;
		assertEquals(expectedPay, actualPay);
	}
}

4. To run the test class, simply make sure it is the active window and choose the green run button. The package explorer will display a new tab as shown below:



5. If a test fails, the jUnit tab looks like this:



Below this, you will see a Failure Trace pane: 




Clicking on the right-most icon in the upper-right displays the Result Comparison dialog:

[image: ]

Writing Tests

1. The link below shows the API for JUnit. To see the API for the the Assertions class, choose “Assertions” from the All Classes menu on the left.

http://junit.org/junit5/docs/current/api/

Mostly you would use these methods: assertEquals, assertTrue, assertFalse, fail Next most frequent might be: assertArrayEquals, assertIterableEquals, assertNotEquals, assertNotSame, assertNull, assertSame, assertThrows

2. Each test method should do one thing.

Source: https://stackoverflow.com/questions/235025/why-should-unit-tests-test-only-one-thing

“Rule of thumb here on a failed test report: if you have to read the test's code first then your test are not structured well enough and need more splitting into smaller tests.” In other words, the DisplayName should explain adequately what the test does without having to read the code.

3. Tests should be readable:

“The intent of a unit test should be clear. A good unit test tells a story about some behavioral aspect of our application, so it should be easy to understand which scenario is being tested and — if the test fails — easy to detect how to address the problem. With a good unit test, we can fix a bug without actually debugging the code!”

Source: https://www.toptal.com/qa/how-to-write-testable-code-and-why-it-matters
 

“Professional: In the long run you'll have as much test code as production (if not more), therefore follow the same standard of good-design for your test code. Well factored methods-classes with intention-revealing names, No duplication, tests with good names, etc.”

Source: https://stackoverflow.com/questions/61400/what-makes-a-good-unit-test


“Readable – This can be considered part of Professional - however it can't be stressed enough. An acid test would be to find someone who isn't part of your team and asking him/her to figure out the behavior under test within a couple of minutes. Tests need to be maintained just like production code - so make it easy to read even if it takes more effort. Tests should be symmetric (follow a pattern) and concise (test one behavior at a time). Use a consistent naming convention (e.g. the TestDox style). Avoid cluttering the test with "incidental details”, become a minimalist.

Source: https://stackoverflow.com/questions/61400/what-makes-a-good-unit-test


4. Other useful annotations

class EmployeeTester2 {

	@BeforeAll
	static void setUpBeforeClass() throws Exception {
	}

	@AfterAll
	static void tearDownAfterClass() throws Exception {
	}

	@BeforeEach
	void setUp() throws Exception {
	}

	@AfterEach
	void tearDown() throws Exception {
	}

	@Test
@DisplayName("Brief description of test")
	void test() {
		fail("Not yet implemented");
	}

	@Disabled("Failing for unknown reason")
	@Test
@DisplayName("Brief description of test")
	void test02() {
		fail("Not yet implemented");
	}
[bookmark: _GoBack]}

5. Nested tests:

@DisplayName("Tests for HW 5")
class HW5_Tester {

	@Nested
	@DisplayName("Tests for MartianManager class")
	class MartianManagerTester {

		@Test
		@DisplayName("addMartian return correct when adding RedMartian")
		void testMartianManager_addMartian_red_successful() {
			assertTrue(mm.addMartian(r1));
		}

		...

	@Nested
	@DisplayName("Tests for Martian class")
	class MartianTester {

		@Test
		@DisplayName("RedMartian toString contains id and volume")
		void testRedMartian_toString() {
			assertTrue(r1.toString().contains(String.valueOf(r1.getId())));
			assertTrue(r1.toString().contains("1"));
		}
		
		...
	}
}

6. You can also define Test Suites which specify which test classes and/or methods to run. There is a bug in Eclipse and they cannot be run from within Eclipse, but can be run from the command line.

4

image1.emf


image2.emf


image3.emf


image4.png
=)

test_getPay_positive_hours(examplel EmployeeTester) DM | 4 fa 43 &
Expected Actual
180.0 1800.0





