[bookmark: _GoBack]Category-Partition Testing Method (ver 2.0)

Category-Partition Method

1. Identify independently testable feature (use case, method)
2. Identify inputs/parameters for each feature
3. Identify categories/characteristics for each input/parameter
4. Partition categories into choices
5. Identify constraints among choices
6. Produce and evaluate test case specifications
7. Generate test cases from test case specifications

Example

1. Suppose we have an algorithm that calculates the amount of health subsidy that is needed for an individual depending on their age, income, and support from government programs. Age is classified as either minor, adult, or senior. Income is below poverty level or above. Support is none, Medicaid, Medicare. Thus, the 3 inputs and their equivalence classes (choices) are:

· Age = {Minor, Adult, Senior}
· Income = {BP,AP}
· Support = {None, Aid, Care}

Thus, we can see that there are 18 total test frames: 3*2*3.

MBN, MBA, MBC, MAN, MAA, MAC, ABN, ABA, ABC, AAN, AAA, AAC, SBN, SBA, SBC, SAN, SAA, SAC

2. Suppose that only seniors who are below poverty level can receive Medicare. That removes the 5 combinations shown highlighted in yellow, leaving 13 test frames.

MBN, MBA, MBC, MAN, MAA, MAC, ABN, ABA, ABC, AAN, AAA, AAC, SBN, SBA, SBC, SAN, SAA, SAC

The statement that only seniors below poverty can receive Medicare is a constraint. We can represent this in TSL as:

Age:
 Minor.
 Adult.
 Senior. [property old]
Income:
 BP. [property poor]
 AP.
Support:
 None.
 Aid.
 Care. [if old && poor]

And when we run the TSL program on this data we get:

	Test Case 1	 (Key = 1.1.1.)
 Age : Minor
 Income : BP
 Support : None

Test Case 2	(Key = 1.1.2.)
 Age : Minor
 Income : BP
 Support : Aid

Test Case 3	 (Key = 1.2.1.)
 Age : Minor
 Income : AP
 Support : None

Test Case 4	 (Key = 1.2.2.)
 Age : Minor
 Income : AP
 Support : Aid

Test Case 5	 (Key = 2.1.1.)
 Age : Adult
 Income : BP
 Support : None

	Test Case 6	 (Key = 2.1.2.)
 Age : Adult
 Income : BP
 Support : Aid

Test Case 7 	(Key = 2.2.1.)
 Age : Adult
 Income : AP
 Support : None

Test Case 8 	 (Key = 2.2.2.)
 Age : Adult
 Income : AP
 Support : Aid

Test Case 9 	 (Key = 3.1.1.)
 Age : Senior
 Income : BP
 Support : None

Test Case 10 	 (Key = 3.1.2.)
 Age : Senior
 Income : BP
 Support : Aid

	Test Case 11 	 (Key = 3.1.3.)
 Age : Senior
 Income : BP
 Support : Care

Test Case 12 	 (Key = 3.2.1.)
 Age : Senior
 Income : AP
 Support : None

Test Case 13 	 (Key = 3.2.2.)
 Age : Senior
 Income : AP
 Support : Aid

3. Now, suppose that minors also, at any income level can also receive Medicare.

Age:
 Minor. [property young]
 Adult.
 Senior. [property old]
Income:
 BP. [property poor]
 AP.
Support:
 None.
 Aid.
 Care. [if (old && poor) || young]

Which yields 15 test frames.

4. Go back to the original version, with no constraints. Now, suppose that only minors and seniors with below poverty income can receive Medicare:

Age:
 Minor.
 Adult. [property adult]
 Senior.
Income:
 BP. [property poor]
 AP.
Support:
 None.
 Aid.
 Care. [if !adult && poor]

Which yields 14 test frames.

Example from Video Lecture

One of the most useful features of CPM is the idea of specifying characteristics/categories for each input. For the example below, the input, str has two characteristics: length and content. For the input to a mathematical function, f(x), the only characteristic is probably the value of x, which we may still need to partition into choices. However, for many situations, the input may have different characteristics that make the algorithm behave differently.

	split(string str, int size)

	Inputs:
1. str – Categories:
a. Length – Choices:
i. 0
ii. size-1
iii. size
iv. size+1
v. 2*size-1
vi. ...
b. Content – Choices:
i. spaces
ii. special characters
iii. ...
2. size – Category:
a. Value – Choices:
i. 0
ii. >0
iii. <0
iv. MAXINT
v. ...

Example from Fall 2017 Project

	Input for TSL
	Output

	# Book
 Book Status:
 	Available.
	On Hold.	[property onHold]
	Invalid.	[error]

Library Card
 Card Status:
 Valid.	
 Invalid. [error]			

Member
 Member Status:
 Good Standing.	
 Suspended Overdue. [single]
 Suspended Lost Book. [single]	
	Suspended General. [single]			
 Num Books:
 0-9.			
 10. [if !onHold]

	Test Case 1 		<error>
 Book Status : Invalid

Test Case 2 		<error>
 Card Status : Invalid

Test Case 3 		<single>
 Member Status : Suspended Overdue

Test Case 4 		<single>
 Member Status : Suspended Lost Book

Test Case 5 		<single>
 Member Status : Suspended General

Test Case 6 		(Key = 1.1.1.1.)
 Book Status : Available
 Card Status : Valid
 Member Status : Good Standing
 Num Books : 0-9

Test Case 7 		(Key = 1.1.1.2.)
 Book Status : Available
 Card Status : Valid
 Member Status : Good Standing
 Num Books : 10

Test Case 8 		(Key = 2.1.1.1.)
 Book Status : On Hold
 Card Status : Valid
 Member Status : Good Standing
 Num Books : 0-9

5. In some ways, I don’t like how the program handles “single” and “error” because it doesn’t specify what choices should be used for the other inputs. You could make things more explicit as the following example shows.

Book
 Book Status:
 	Available.	[property available]
	On Hold.	[property onHold]
	Invalid.	[error]
Library Card
 Card Status:
 Valid.		 [property valid]
 Invalid. [if available && valid]		
Member
 Member Status:
 Good Standing.	
 Suspended Overdue. [if available && valid]	#instead of single	
 Suspended Lost Book. [if available && valid]			
 Suspended General. [if available && valid]	

Note that this might be too tedious with a larger example. Also, could end up with a circular reference problem (that is why I took the number of books characteristic off!). See Item 11 below.

Notes about using the TSL Program

	#Age of Person
Age:
 Minor.
 Adult.
 Senior. [property old]
#Income of Person
Income:
 BP. [property poor]
 AP.
#Suppor reveived
Support:
 None.
 Aid.
 Care. [if old && poor]

1. A # indicates a comment. Optional.
2. In category-partition, we use: input variable -> characteristic -> choice to model a situation. However, with TSL there is no “variable”, you only specify characteristic and choices.
3. Characteristics end with a colon
4. Choices end with a period
5. Use &&, ||, and ! when constructing if statements on choices.
6. Use parentheses to group if needed, however no space between parenthesis and property. For example:

Valid: [if (x && y) || (x && z)]
Not valid: [if (x && y) || (x && z)]

7. To run TSL, display the number of test frames, and be prompted to save results:

tsl –c pathToSpecFile/specFile

For example: tsl –c Specs/getPay.txt

8. To run TSL and display test frames to the console:

tsl –s pathToSpecFile/specFile

9. To run TSL and save test frames to a text file:

tsl pathToSpecFile/specFile –o outFile.txt.tsl

10. If a test frame has “n/a” for a choice this means something about your constraints is wrong, leading to ambiquity.

11. Properties must be defined before they can be used, otherwise you will get an error. In other words, this will give an error:

Support:
 None.
 Aid.
 Care. [if old]
Age:
 Minor.
 Adult.
 Senior. [property old]

1

