[bookmark: _GoBack]Lab 6
Rebasing

In the last lab we consider branching and merging with conflicts. In Git there are two ways to integrate changes from one branch into another: merge and rebase.

Rebase is similar to merging, except the other direction. Instead of merging a branch into master and possibly having conflicts, a rebase essentially merges master into a branch. When conflicts occur, they are moved to a temporary location. There, you can fix the conflicts (or abort), then continue the rebase. Finally, a merge is done to pull branch into master which should occur (fast-forward) with no conflicts.

The scenario will be the same as the last tutorial: (a) create a new branch, fix1 off of master, (b) edit a file there, stage and commit to the branch, (c) create a branch, fix2 off of master, (d) edit the same file there which conflicts with the edit in fix1, stage and commit the change, (e) do a rebase (there will be no conflicts), (f) merge fix2 to in master, (g) go back to the fix1 branch, rebase, which generates a conflict just as in the previous tutorial, (h) resolve the conflict, (i) continue the rebase, (j) and then merge fix1 into master.

From my understanding, rebasing seems a better approach at resolving conflicts because it doesn’t affect master. Then, when resolved, you can merge the non-conflicting branch into master.

(Optional) A detailed explanation of exactly what is happening with a rebase is found here:
https://git-scm.com/book/en/v2/Git-Branching-Rebasing

For this lab, we will start from scratch.

Steps to Complete – Part 1

This shows an example of a Competing line change merge conflicts.

1. Do the following:

a. Close Cmder or navigate out of the gitex directory.
b. Use File Explorer to delete everything in your gitex directory. It should be completely empty
c. Open Cmder and navigate to gitex.
d. Here, we load up the master branch with working code. Do the following:

λ git init
λ notepad foo.txt // Type the text: “Friday”
λ git add foo.txt
λ git commit –m “New foo in master”

2. Next, Developer 1 is notified to fix a bug in the code. She creates a branch and does the fix. Do the following:

λ git checkout –b fix1
λ notepad foo.txt // Change text to “Saturday”
λ git commit -a -m "fixed foo in fix1"

3. Next, Developer 2 is notified to fix a bug in the code. He creates a branch and does the fix.. Do the following:

λ git checkout master
λ git checkout –b fix2
λ notepad foo.txt // Change text to “Sunday”
λ git commit -a -m "fixed foo in fix2"

4. Developer 2 is finished and is ready to merge his code back into master. Assume Developer 1 is still working on her fix. We use the rebase approach here, and it will succeed with no problem because the master branch has not been updated with anything conflicting (it hasn’t been updated at all, since the fix2 branch was created). Do the following:

λ git rebase master	// Should say, “Current branch fix2 is up to date”
λ git checkout master
λ git merge fix2		// Should say, “Updating…Fast-forward...”
λ git branch –d fix2	// All done with this branch now
λ type foo.txt		// Displays: “Sunday”

5. Developer 1 is now finished and ready to merge her code back into master. We use the rebase approach which will fail because master now conflicts with fix1 because master has been update since fix1 was created, and there is a conflict in the first (only) line of the file. Do the following:

a. Checkout fix1:

λ git checkout fix1

b. Rebase with master. The result is shown below (message will be different, things have changed! But spirit is the same).

λ git rebase master

[image: E:\Data-Classes\CS 4321 - Summer 18\topics\Version Control\a1.jpg]

This tells us several things:

i. There is a conflict in foo.txt. Thus, we need to edit this file and fix the marked-up conflict.
ii. Notice the heading above the command prompt has changed, as shown below. This means that we are on a temporary branch.

[image: E:\Data-Classes\CS 4321 - Summer 18\topics\Version Control\a2.jpg]
iii. We have several choices:

1. “git rebase --continue” – Continues the rebase. If successful, the temporary branch will be removed and fix1 will now have incorporated any non-conflicting changes in master and the current branch will be fix1.
2. “git rebase --skip” – I’m not sure what this does.
3. “git rebase --abort” – Aborts the rebase and the current branch will be fix1.

c. Developer 1 fixes the conflict. Open foo.txt and change it so that it says: “Saturday Sunday”

λ notepad foo.txt

d. Add the change:

λ git commit -a -m “fixed conflict in detached head”

e. Continue the rebase:

λ git rebase --continue

Notice the heading above the prompt has changed back to fix1 since the rebase is complete (your display will be different, e.g. the “Applying…” message will be something different):

[image: E:\Data-Classes\CS 4321 - Summer 18\topics\Version Control\a3.jpg]

f. Developer 1 merges fix1 into master. Do the following:

λ git checkout master
λ git merge fix1
λ git branch –d fix1
λ type foo.txt		// Displays: “Saturday Sunday”

6. Do the following:

a. Make a screen shot of the top 3 commits of: git log (in master). Make sure it shows your name and date.
b. Place the image in the HW VCS document in the appropriate place.
c. The image should easily readable without zooming in or out.

Good idea: make a backup copy of your gitex folder with the name: gitex_6. Then, you’ll start Lab 7 using the gitex repo. Lab 7 does continue from Lab 6.
3

image1.jpeg
A git rebase master

First, rewinding head to replay your work on top of it...
Applying: fixed foo in fix1

error: Failed to merge in the changes. <
Using index info to reconstruct a base tree...
M foo.txt
Falling back to patching base and 3-way merge...
Auto-merging foo.txt

CONFLICT (content): Merge conflict in foo.txt
Patch failed at 0001 fixed foo in fixl

The copy of the patch that failed is found in: .git/rebase-apply/patch

Rebase is suspended
because of conflict

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip™ instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

image2.jpeg
(HEAD detached at d637alf)

image3.jpeg
A git rebase --continue
Applying: fixed foo in fix1

e:\gitex (fix1) <—

