Lab 4
[bookmark: OLE_LINK6]Branching and Merging

So far you have worked off the master branch of your repository. Git allows you to make a copy of the master branch, work off that copy, and then merge your changes back into the master branch. Or, in general, you can create a branch off of any branch.

When you work with Git, best practice is that the code in your master branch should always be working and tested code. In other words, you don’t directly edit the code there. Instead, you create a branch off of master and work there. When the code in the branch is finished and tested, then you merge the branch into master. In other words, when you want to start work on a new feature you don’t want to risk destroying the working code in the master branch, so you do the new development on a branch.

When you work in a group everyone should have their own branch, periodically merging back into master. If a group member merges into master you can use Git to pull those changes to your branch, if needed. We illustrate this in Lab 8

In this lab you will create a new branch, work on files in the new branch and then merge the changes back to the master branch. This lab continues from Tutorial 3.

Steps to Complete

1. Do the following:

a. Create a new branch named newfeature:

λ git branch newfeature

This command copies the files in the current branch (which in this case is master) to the new branch. You might be more familiar with a syntax like: copy from to; however, Git does it as shown above.

b. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\a7.jpg]Display a list of all the branches:

λ git branch

The result is shown on the right.

c. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\pics2\b1.jpg]Switch (checkout) to the new branch:

λ git checkout newfeature

The result is shown on the right.

d. (Read, no action required) You can create a branch and check it out with a single command with this syntax:

λ git checkout -b myNewBranch

e. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d5.jpg]Display a list of all branches:

λ git branch

The result is shown on the right.

	Warning: Somehow “master” got changed to “Master” in the figure above. This probably resulted from developing these tutorials over and over. Almost certainly yours will say “master”.

2. Create a new file, bar.txt and add the text, “This is a new file”

λ notepad bar.txt

3. Open foo.txt and add this text to the end of the file: “Welcome back.”, then save.

λ notepad foo.txt

4. Stage both files (can also use: git add –A, not sure the difference but is the same for us)

λ git add .
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d2.jpg]
5. Check the status:

λ git status

The result is shown on the right.

6. Commit the changes to the newfeature branch:

λ git commit -m "Expanding helloworld app"

7. Next, we merge the newfeature branch with the master branch. The way this works is you have to switch to the branch that you want to merge into (master) and then issue the merge command specifying the branch you want to merge (newfeature).Follow these steps:

a. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d3.jpg]Checkout the master branch

λ git checkout master

Note: the figure shows “Master” while yours is probably “master.”

b. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d4.jpg]Merge the newfeature branch

λ git merge newfeature

c. Display the folder contents and verify that the new file, bar.txt is present. Remember, you are on the master branch now so we hope to see that bar.txt has been added:

λ dir

d. Display the contents of foo.txt and verify that the changes are there:

λ type foo.txt

e. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\a8.jpg]Display the commit log and note that the commit from the newfeature branch is now apart of the commits for the master branch as shown on the right

λ git log –n 3

8. (Read, no action required) This was an “easy” merge as indicated by “Fast-forward” in the figure from Step 7b above. What made it easy was that master had not been committed to after the newfeature branch was created. In the figure on the left below, before the merge we have committed to newfeature (C2) and it is directly ahead of master. After the merge, Git simply moves the master pointer forward as shown on the right below.

	Before merge
	
	After merge

	
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b2.jpg]
	
	
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b3.jpg]

A more complex situation occurs when there are other branches that have been created and merged into master. Suppose the newfeature branch is created. Next, suppose the hotfix branch is created, a file, say f1 is modified and committed (see figure on the left below). Next, suppose hotfix merges into master (see figure on the right below). This is a fast-forward merge. Finally, suppose newfeature is ready to merge into master; however, newfeature is no longer directly ahead of master. In other words f1 in newfeatue may be in conflict with f1 in the new master. Note that the figure on the right below does not show newfeature being merged into master, in a later tutorial we will consider merge conflicts.

	Before merge
	
	After hotfix merge

	
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b4.jpg]
	
	
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b5.jpg]

9. Consider this scenario: suppose a file is modified on master and now you want to “overwrite” it in newfeature, so that you have the most recent version. One way to do this (from the newfeature branch) is: git checkout master filename. The resulting file will be added to the index (staged) in newfeature. Then, you would commit it. Follow these steps:

a. Checkout the master branch (you probably already have it checked out)

λ git checkout master

b. Open foo.txt and add this test at the end: “Roundabout”

λ notepad foo.txt

c. Stage and commit the file

λ git commit –a –m “New feature to app”

d. Checkout newfeature

λ git checkout newfeature

e. Copy foo.txt into newfeature:

λ git checkout master foo.txt

f. Commit the file:

λ git commit –m “updated from master”

g. Verify the contents of foo.txt in newfeature:

λ type foo.txt

10. (Read, no action required) This technique will work for (a) new files added to master and (b) more complex changes to foo.txt in master (as far as I can tell!). Thus, it looks like: git checkout branch file, essentially replaces any existing file in the active branch, but still must be committed.

11. Delete the newfeature branch:

a. Checkout the master branch

λ git checkout master

b. (Read, no action required) Generally, we would just delete the branch. However, since we copied foo.txt from master in the Step 9 and committed it to newfeature, newfeature should be merged first.

c. Merge newfeature:

λ git merge newfeature

d. Delete the newfeature branch

λ git branch –d newfeature

e. (Read, no action required) We could have forced the deletion, without merging by using: git branch –D newfeature
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\a9.jpg]
f. Verify that newfeature is deleted

λ git branch

12. Do the following:

a. Make a screen shot of the top 3 commits of: git log (in master). Make sure it shows your name and date.
b. Place the image in the HW VCS document in the appropriate place.
c. The image should easily readable without zooming in or out.

[bookmark: _GoBack]Good idea: make a backup copy of your gitex folder with the name: gitex_4. Then, you’ll start Lab 5 using the gitex repo.

5

image3.jpeg
git branch -a

X Master Active branch

image4.jpeg
git status
On branch newfeature Active branch
Changes to be committed:

(use "git reset HEAD <file

Staged changes

image5.jpeg
E:\gitex (newfeature)
A git checkout Master
Switched to branch 'Master'

E:\gitex (Master)

image6.jpeg
A git merge newfeature
Updating b2253c4..51ee24e
Fast-forward
bar.txt | 1 +
foo.txt | 3 ++-
2 files changed, 3 insertions(+), 1 deletion(-)
create mode 100644 bar.txt

image7.jpeg
A git log -3

commit ccebblbl663b7a2c5a11708d90@d73ee458c4c
Author: Dave Gibson <davegibson2@gmail.com>
Date: Tue May 8 12:24:18 2018 -0400

Expanding helloworld app

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg
commit 74834adb4984d6c1db02d8dc699¢
Merge: e7c6b36 bc2fdle

Author: Dave Gibson <davegibson2@gn
Date: Tue May 8 12:50:53 2018 -04

Merge branch ‘'newfeature’
commit bc2fd10d59970189d6126a%9a1702
Author: Dave Gibson <davegibson2@gn
Date: Tue May 8 12:33:17 2018 -04

updated from master
commit e7c6b3678442af5dadaléc/cbatE
Author: Dave Gibson <davegibson2@gn

Date: Tue May 8 12:30:00 2018 -04

New feature to app

image1.jpeg
:\gitex (master)
git branch

*

newfeature

image2.jpeg
git branch newfeature

(master)
git checkout newfeature
Switched to branch 'newfeature’

Indicates that

newfeature

(newfeature) branch is
| now active

