Component Diagrams

StarUML

https://docs.staruml.io/working-with-uml-diagrams/component-diagram
https://staruml.readthedocs.io/en/latest/modeling-with-uml/working-with-component-diagram.html

1. Component-based development is an approach where a system is broken down into subsystems, which are broken down further into components. Sometimes the term module is used synonymously for either subsystem or component.

2. Example – UML Component Diagram:

[image: Required and provided interface]

Source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/

Another Component provides an API of services, the Provided Interface. The Provided Interface must be implemented by a class in Another Component. Sometimes, it can be a façade, which is simply a class that simplifies access to a set of other classes.

3. [image: Provided and required interfaces may be listed below the component name]Interfaces can be expressed in 3 ways:

[image: Provided and required interfaces are shown using ball and socket notation]

[image: Representation of provided and required interfaces using classifier rectangles]

Source: http://www.technologyuk.net/software-development/uml/component-diagrams.shtml
4. A white-box view of a component diagram shows the classes that realize the component’s provided interfaces and can be expressed in several ways:

	[image: List the classifiers that realise the component's provided interfaces]
	[image: A structure diagram showing component classifiers and dependencies]

[image: Classifiers can be shown inside the component rectangle]

Source: http://www.technologyuk.net/software-development/uml/component-diagrams.shtml

5. Example – A Customer Repository component provides a Customer Lookup interface which is required by an Order System component. An Inventory System component provides a Product Accessor interface which is also required by the Order System component. Draw the corresponding component diagram.

[image: Component interface example]

Source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/
6. Example – Components can be nested. Sometimes the outer component is called a subsystem.

[image: Component Diagram at a glance]

Source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/

7. UML Component Diagram:

“…the component diagram allows a senior developer to group classes together based on common purpose so that the developer and others can look at a software development project at a high level.”
Source: https://www.lucidchart.com/pages/uml-component-diagram

“…use UML 2 component diagrams as an architecture-level artifact, either to model the business software architecture, the technical software architecture, or more often than not both of these architectural aspects.

“Component diagrams are particularly useful with larger teams. Your initial architectural modeling efforts during cycle 0 should focus on identifying the initial architectural landscape for your system. UML component diagrams are great for doing this as they enable you to model the high-level software components, and more importantly the interfaces to those components. Once the interfaces are defined, and agreed to by your team, it makes it much easier to organize the development effort between subteams. You will discover the need to evolve the interfaces to reflect new requirements or changes to your design as your project progresses, changes that need to be negotiated between the subteams and then implemented appropriately.”
Source: http://agilemodeling.com/artifacts/componentDiagram.htm

8. What exactly are component diagrams? The UML specification are somewhat vague (by design, I understand) and so you will see slightly different usages. We will consider a component as a grouping of classes (and interfaces) into packages.

What exactly are interfaces? In a general sense it is the public API that the component exposes. More specifically, they are Java interfaces and classes that define the public API.

9. Example – 3 Layer/Tier Architecture: the presentation layer, the business logic layer, and the data layer. Usually you design the layers so that higher layers require services from the immediately lower layer; conversely, lower levels don’t require services of higher layers.

[image: http://agilemodeling.com/images/models/componentDiagramUML2.jpg]

Source: http://agilemodeling.com/artifacts/componentDiagram.htm

10. Example – JUnit 5 Dependency diagram:
[image: G:\eDataClasses\CS 4321\CS 4321 - Summer 18\topics\03_UML\notes\aa.jpg]

Source: https://junit.org/junit5/docs/current/user-guide/#dependency-diagram

11. Example – Insurance Policy Administration:

https://upload.wikimedia.org/wikipedia/commons/b/b8/Policy_Admin_Component_Diagram.PNG

12. In large systems, components are organized into subsystems, which are really just components themselves. In the example below there are three subsystems:

[image: Online shopping UML component diagram example with three related subsystems - WebStore, Warehouses, and Accounting.]
Source: http://www.uml-diagrams.org/examples/online-shopping-uml-component-diagram-example.html?context=cmp-examples

Homework
1. Draw a component diagram for this situation: A hotel reservation system is being architected. It is decided that there will be a reservation component that provides a reservation services interface. There is also an accounting component that provides an invoice interface which is required by the reservation component. There is also a customer component that provides two interfaces: access customers and manage customers. The access customers interface is required by the reservation component.

5

image1.png
Required Interiace

_ m.m. |

Provided Inleﬂace

image2.gif
<<component-> &
InventoryCtl

«provided interfaces»
StockMovement
CatalogueCtt
DatabaseAccess

«required interfaces»
ReOrder

image3.gif
<<component-> &]

InventoryCtl
StockMaovement Databasehccess

Cataloguectrl ReOrder

image4.gif
<cinterface>> <<intertace>>

StockMovement Databasehccess
+ temout) — <<component>] o + quero
+ itemin) i A + update)

+ adjustStock()

+ createReport)

<cinterface>>

<interface>>
CatalogueCtrl

+ createOrder)

1 [ReOrder

+ temCreate)
+ temDelete()
+ temUpdate()

image5.gif
<<component-> &
InventoryCtl

«provided interfaces»
StockMovement
CatalogueCtt
DatabaseAccess

«required interfaces»
ReOrder

«ealizations»
ControlCtr
Transaction
Requisition

image6.gif
<<component-> &]
InventoryCtl

i

Transaction

Requisition

image7.gif
StockMaovement

ReOrder

<<component>>
InventoryCtl

Transaction |- -~ | ctricentre

Databasehccess

Requisition

CatalogueControl

image8.png
<<component>> © <<component>>
Order System E Customer Repository
Produc s

T

Inventory System

image9.png
Component
1
l

12
e
Tormina g
Port
N Required Interface
Provided = = \
interface ~ ", O seiapeesn W—O: st 2
State State Inspector +
O o—=
Datals oalats Inspection 1D Acsount

Account

Locason Inspaction ID

Inspaction tem Defect dotails.

= e

image10.jpeg
Datanccess,

€

Facilies

4

Student

Encryption
o

Access Control

2

Seminar

Sccurity
<<infrastructure>

o]
Facies
B
S
Seminar &| -
i Datacosss |
P O e
N~ So—
~
\\ i
DaAcng,, |
— <
Adminiiration
"

Schedule

g

Porsisonce | <cinfrastructre>>
— I
\
\
<<reqires>>
\
2|
Goiversiy DB

“dutabase> e

image11.jpeg
org Junit jupiter

org junit.vintage\

org.apiguardian

-

Al arifacts except
apentestd] and junitjunit
have a dep on this

*. Livnit-platform-launcher

junit-platform-engine junit-platform-suite-api

opentestd;

junit-platform-commons

arifact, The edges have
been omiied from this
diagram far the sake of
readabilty.

image12.png
«subsystem» WebStore

ProductSearch
o—

OnlineShopping
Oo—t

UserSession
o—

internal structure

«subsystem» Warehouses.

£l

Search

Inventory

internal structure

:SearchEngine

“Inventory

Manage
Inventor

H—O<

«subsystem» Accounting

£

Manage
Orders

internal structure.

:Shopping Cart

Manage
Customers

Manage
Customers

© uml-diagrams.org

“Customers

Manage

:Accounts

Manage
Inventory

