Tutorial 5
[bookmark: OLE_LINK1]Resolving Merge Conflicts

Sometimes a merge will cause a conflict. For example, suppose someone changes a file in in master and then someone changes the same thing in a new branch. When the new branch is merged with master there will be a conflict and Git cannot accomplish the merge. In this case, you must resolve the conflict manually, stage and commit the resolution. In this tutorial we consider a simple case of this and how to resolve it.

A conflict will exist anytime a line of code in one branch is modified (or deleted), while that same line in another branch is modified. However, note that this does not occur in the simple case we had in the previous lab. There, we branched off of master, made a change in the branch, and then merged back – all the while master had not been changed. This is called a fast-forward merge.

The scenario for this lab is:

1. You have a working piece of code in the master branch. You want to start development on a new feature so you create a new branch, newfeature2. You work on the code in newfeature2.
2. Suddenly an urgent change needs to be made to the code base (master). You switch back to the master branch, create a new branch, quickfix. You make the change, stage, commit, and the merge back into master. This will be a fast-forward merge.
3. Then, you go back to the newfeature2 branch, continue working making a change that will conflict with a change made in quickfix that has now been merged into master. The resulting merge has a conflict which we must be resolved.

This lab continues from Tutorial 4.

Steps to Complete – Part 1

This shows an example of a Competing line change merge conflicts and is similar to the steps below.

1. Create a new branch and check it out:

λ git checkout –b newfeature2

2. Open foo.txt and change, “Hello World” to “Hello YourFirstName YourLastName” (make sure and supply your name), save and close.

λ notepad foo.txt

3. Stage and commit changes to newfeature2 branch.

λ git commit –a -m "Changed to YourFirstName YourLastName"

4. (Read, no action required) An urgent message has just come in that we need a quick fix to master…

5. Switch back to the master branch, create a new branch, quickfix and switch to it:

λ git checkout master
λ git checkout –b quickfix

6. Open foo.txt and change, “Hello World” to “Hello you people”, save and close.

λ notepad foo.txt

7. Stage and commit changes to quickfix branch.

λ git commit -a -m "Changed to you people"

8. Switch back to the master branch and merge the quickfix:

λ git checkout master
λ git merge quickfix

9. Display contents of foo.txt and verify that top line says, “Hello you people”.

λ type foo.txt

10. Switch back to the newfeature2 branch

λ git checkout newfeature2

11. Open bar.txt and change this text at the end: “More stuff in new file” to “Less stuff in new file”. Save and close.

λ notepad bar.txt

12. Stage and commit changes to newfeature2 branch.

λ git commit -a -m "Less stuff"

13. Switch back to the master branch

λ git checkout master

14. Attempt to merge newfeature2 with Master:

λ git merge newfeature2

The result is shown below. The problem is that foo.txt in Master has, “Hello You People” and foo.txt in newfeature2 has, “Hello Everyone”.

[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d6.jpg]

15. Check the status of master. The result is shown on the right.

λ git status
[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b1.jpg]

16. Open the foo.txt in notepad and you will see the conflict which has been marked-up by Git. Do not close the file, you will change it in the next step. Do the following:

a. Display foo.txt:

λ notepad foo.txt

The result is shown below (there may also be the text, “Roundabout” that we added earlier):

[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\pics2\b2.jpg]

b. One way to resolve this conflict is to simply edit the file, replacing the markup Git has added (i.e. “<<<…”, etc.) and leaving the file as you desire it. Do this now: remove all markup leaving the text, “Hello YourName” as shown below. Then, save and close.

[image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\pics2\b3.jpg]

17. Note that the merge attempted earlier did not occur. Thus, we need to stage the change we just made to the marked up foo.txt:

λ git add foo.txt

18. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\d9.jpg]Display the status

λ git status

Note: Git still thinks it is “merging”. When we commit these changes the merge will be complete.

19. Finally, commit the changes:

λ git commit -m "Merge conflicts resolved"

20. Delete the two branches:

λ git branch -d newfeature2
λ git branch -d quickfix

Steps to Complete – Part 2

This portion of the tutorial shows an example of a Removed file merge conflicts and is similar to the steps below.

21. (Read, no action required). Here we show an example of where one branch (say master) has changed a file while another branch has deleted it.

22. Create a new branch (but don’t activate it):

λ git branch newfeature3

23. Open (in master) bar.txt and replace all existing text with: “Friday”, save and close.

λ notepad bar.txt

24. Stage and commit:

λ git commit -a –m “new bar in town”

25. Checkout newfeatue3

λ git checkout newfeature3

26. Remove bar.txt (from newfeature3) (this will be the “old” one, without “Friday”)

λ git rm bar.txt

27. Stage and commit

λ git commit -a -m "Really don't need any more"

28. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b2.jpg]Return to master and merge newfeature3. The result is shown on the right.

λ git checkout master
λ git merge newfeature3

29. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b3.jpg]Check the status. The result is shown on the right.

λ git status

There are two choices here: remove the file or keep it. In the next step, will remove it.

30. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b4.jpg]Remove the file and stage it, then check status. The results are shown on the right

λ git rm bar.txt
λ git status

31. (Read, no action required) If we had wanted to keep bar.txt, we would have:

λ git add bar.txt

and then committed the same as we do in the next step.

32. Finally, commit the deletion, check the status and note that master is clean

λ git commit -m "Removed bar.txt via conflict resolution"
λ git status

33. (Optional) It is likely as you work on your project you will need to learn more about branching, merging, and rebasing. More information about Basic Branching and Merging. A merge that has conflicts can also be aborted as explained in Advanced Merging. An alternative to merging is rebasing which we consider in the next tutorial.
34. [image: E:\Data-Grant\IndirectFundProposal_2017\Git Stuff\ver2\b5.jpg]Do the following:

a. Make a screen shot of the top 3 commits of: git log (in master). Make sure it shows your name and date.
b. Place the image in the HW VCS document in the appropriate place.
c. The image should be easily readable without zooming in or out.

[bookmark: _GoBack]Good idea: make a backup copy of your gitex folder with the name: gitex_5. Then, you’ll start Lab 6 using the gitex repo.

6

image2.jpeg
git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit™)
(use "git merge --abort" to abort the merge)

Changes to be committed:

Unmerged paths:
(use "git add <file>..." to mark resolutionj

Added to index (staged)
since there was no conflict

Not staged, marked-up
showing the conflict. Must
edit to resolve the conflict
and then stage

image3.jpeg
<<<<<<< HEAD
Hello you people <€«——— Contentin master

,BIO,Ck markers . \ Hello Dave Gibson -¢«—— Conflicting content
indicating conflict >>>>>>> newfeature2 :
in newfeature2
Glad you could join us.
welcome back.

image4.jpeg
Hello Dave Gibson
Glad you could join us.
welcome back.

image5.jpeg
A git status

On branch Master

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:

modified: bar.txt
modified: foo.txt

image6.jpeg
E:\gitex (master)
A git merge newfeature3
CONFLICT (modify/delete): bar.txt deleted in newfeature3 and modif

bar.txt left in tree.
Automatic merge failed; fix conflicts and then commit the result.

image7.jpeg
E:\gitex (master)
A git status
On branch master
You have unmerged paths.
(fix conflicts and run “"git commit™)
(use "git merge --abort" to abort the merg

Unmerged paths:
(use "git add/rm <file>...

as appropriate
deleted by them: bar.txt

no changes added to commit (use "git add" ar

image8.jpeg
E:\gitex (master)

A git rm bar.txt
bar.txt: needs merge
rm ‘bar.txt’

E:\gitex (master)

A git status

On branch master

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:

deleted: bar.txt

image9.jpeg
A git log -n 3

commit Bac093e@f8648396deb3eb0133650f3a633fbc7
Merge: 2667b68 7152de2

Author: Dave Gibson <davegibson2@gmail.com>
Date: Tue May 8 13:48:23 2018 -0400

Removed bar.txt via conflict resolution
commit 7152de2e20f2560825d9612613865calab993fc
Author: Dave Gibson <davegibson2@gmail.com>
Date: Tue May 8 13:37:10 2018 -0400

Really don't need any more
commit 2667b68e39e4d89ael59a24f8dbdlafb7a23aca
Author: Dave Gibson <davegibson2@gmail.com>

Date: Tue May 8 13:35:20 2018 -0400

new bar in town

image1.jpeg
A git merge newfeature2
Auto-merging foo.txt

CONFLICT (content): Merge conflict in foo.txt
Automatic merge failed; fix conflicts and then commit the result.

