[bookmark: OLE_LINK2][bookmark: _Hlk73794424]Project Requirements
Contents
1	Overview	1
2	System Requirements	1
3	Development Requirements	2
3.1	Project Management	2
3.2	Testing	2
3.3	Coding	2
3.4	Version Control	3
3.5	Individual Team Members	3
4	User Story Spreadsheet Directions	4
4.1	User Stories Tab	4
4.2	System Tests Tabs	4
5	Time Log Instructions	5
5.1	Individual Hours Tab	5
5.2	Activity Codes Tab	5
5.3	Time Log Tab	5
6	Getting Started	6

[bookmark: _Toc210223371]Overview
You will build a stand-alone GUI application, written in Java, based on the prioritized user stories (US) that you have been provided. The project will have 3 sprints, each of equal length (5 class periods). For Sprint 1, I’ll provide you the first 13 prioritized US and at the conclusion, your group will do a demo on either October 28 or 30. The second sprint’s demo is Nov 18 or 20. The third sprint concludes on exam day, Dec 10 with a video demo. The following sections detail the various requirements that shall be adhered to during the development.
[bookmark: _Toc210223372]System Requirements
1. The system is written as a stand-alone Gui application in Java. As described, this is an example of a web or app-based system. You will not write such a system. Instead, you will write a stand-alone, desktop system, a prototype of sorts, that enables all these functions via a single GUI.
2. The system is object-oriented (OO) and should utilize best practices for OO design.
3. The system should utilize the MVC architecture. In other words, the event handlers are as short as possible and they should call a controller class(es) to accomplish the requested service.
4. The system utilizes text, binary, JSON, or XML files for data persistence and all data is in memory as the program runs, represented as objects. The system DOES NOT utilize a database.
[bookmark: _Toc210223373]Development Requirements
[bookmark: _Toc106021205][bookmark: _Toc210223374]Project Management
5. You will use a GitHub Project to manage your development. You will have these columns: To Do, Doing, Done. You can add columns if it helps your team.
6. You will break work down into small tasks that 1-2 people will work on (some tasks may involve the whole group). These tasks should be estimated to take between 0.5 hours and 4 hours in length. ALL tasks must be entered in your GitHub Project. Do not do work on the project without a task.
Think about this carefully keeping in mind that you must work as a team, and that all team members should contribute to the development tasks. Tasks will be entered as Issues in GitHub and added to the To Do column. From there, they will be moved to a Doing column and finally to the Done column. 
This will be new activity and it might be a bit of a struggle to do this. Almost all software companies use this approach. Many times, a project manager will develop these, sometimes in conjunction with developers. In some companies, a developer will simply go to the To Do list and “pull a ticket.” When complete, they pull another one.
Task/Issue breakdown is iterative. Your group will identify some initial tasks to get started on development. As issues are in progress or completed you will learn more about what you need to do. If a task turns out to be much bigger, or involve things you didn’t initially think of, then simply add them as new tasks, possibly closing out the initial task. Thus, Task/Issue breakdown is ongoing.
Sometimes a task may be to figure out what needs to be done, in other words, a planning session. The conclusion of that task will generally result in concrete tasks that contribute to the development.
Sometimes a task may be a placeholder of sorts, broad, open-ended, just so you don’t forget out it. Then, when ready to address it, it might be broken down into concrete tasks. In this case, you would remove the initial task once it has been broken down.
[bookmark: _Toc106021206][bookmark: _Toc210223375]Testing
7. You are required to have JUnit tests for each class following the conventions discussed in class.
8. You are required to define system tests that test each of the US. These are manual tests and are detailed versions of acceptance tests. You can use acceptance tests as a guide or you can come up with the tests yourselves. Each US should be tested in as many sets of circumstances as needed to verify that your implementation is robust.  Each of the US system tests are documented on a separate tab in the user_stories.xlsx spreadsheet. These will detail the specific input values, expected and actual output, and other things.
[bookmark: _Toc106021207][bookmark: _Toc210223376]Coding
9. Programmed in Java using best practices for object-oriented software development: meaningful class and member names (and proper format-camel case), consistent indentation, naming of collections, naming booleans, encapsulation, class design, no static methods or variables (if you think you need them, submit your reasons to me immediately for my review), etc.
10. Adhere to the MVC design principles presented in class. The example presented in class only utilized one controller. However, keep the Single Responsibility Principle in mind with respect to controllers. In other words, you can have as many controllers as you need.
11. Generative AI is allowed; however, all use must be documented in the code itself with one of the following comments:
a. 
// AI Generated (Copilot)
...
// --End AI Generated
b. 
// AI Generated (Copilot), modified somewhat
...
// --End AI Generated
c. 
// AI Generated (Copilot), modified heavily
...
// --End AI Generated
[bookmark: _Toc106021208][bookmark: _Toc210223377]Version Control
12. [bookmark: _Hlk177560041]Only working, tested code should be in your master branch of GitHub and it should be in a package(s).
13. Each person is required to work in their own branch. Branches are required to be named: lastname1, lastName2, etc.
14. Commit early and commit often. When you add a method, commit. When you change something, commit. When you rename some files, commit.
15. The title of all commit messages is required to be prefixed with “ADD”, “FIX”, or “CHANGE”. For example: “Add short title”, “FIX short title”, “CHANGE  short title”. If you find you need another prefix, then use it. Another two may be: REFACTOR short title, MERGE short title. Titles should meaningfully summarize what was committed.
A commit message should detail why something was done. A commit message is not always necessary.
16. When you have code on a branch ready to merge with master, you should use the rebase workflow and then open a pull request. At least “some” pull requests are required to be reviewed by at least one other member before merging. In practice, all pull requests are reviewed. The more the better for your grade.
[bookmark: _Toc106021209][bookmark: _Toc210223378]Individual Team Members
17. All time spent on the project is entered, on a timely basis, into a spreadsheet I will share with your group. Directions for the Time Log are in Section 6.
18. You should work consistently on the project. In other words, you should not do a minimal amount of work one week, and then double the next week. This ensures that project is not held back.
[bookmark: _Toc135398757]

[bookmark: _Toc210223379]User Story Spreadsheet Directions
[bookmark: _Hlk177560165]This is information about what you need to do to the user_stories_SE_master.xlsx spreadsheet as your work progresses.
· [bookmark: _Hlk177560189]Rename: US_LMS_Sprint1_teamX.xlsx, where “X” is your team number.
· Store the US_LMS_Sprint1_teamX.xlsx spreadsheet in your GitHub repository in a folder named docs.
[bookmark: _Toc135398758][bookmark: _Toc210223380]User Stories Tab
1. Do not add or remove, or renumber any user stories.
2. At the end of the sprint it should be sorted on Priority.
On the User Stories-Sprint 1 tab:
3. [bookmark: _Hlk177560219]For the Status column (column G), use one of these values:
	Status
	Description

	C
	The user story is complete if there is at least one system test and all system tests have passed.

	B
	The US is buggy meaning there is not at least one system test, or at least one system test is not passing

	
	Leave the cell empty in any other case


4. For the # System Tests column (column H), type the number of test specifications that have been written for the user story. Otherwise, leave blank. 
5. For the # System Tests Passed column (column I), type the number of system tests that have passed. Otherwise, leave blank. 
6. For the Comments column (column J), write any comments that you think are needed.
[bookmark: _System_Tests_Tabs][bookmark: _Toc135398759][bookmark: _Toc210223381]System Tests Tabs
You will write system tests for each User Story and each test will be on a separate tab. There are two such tabs in the document already, just as samples. Thus, create a tab for each user story. The tabs should be named: US-1, US-2, etc. where the number represents the priority of the user story. On each tab, specify the system test(s) in the format below. An example is provided on the US-1 tab (which should be removed before turning in). There should be at least on system test for each user story. In most cases there should be more, including unhappy path tests.
	US Title
	[User story title]

	
	

	Test Num
	1

	Description
	[Brief description]

	Directions
	[List steps to conduct test so that it is reproducible]

	Expected Output
	

	Comments
	

	
	

	Test Num
	2

	Description
	

	Directions
	

	Expected Output
	

	Comments
	


[bookmark: _Sample_Reports][bookmark: _Time_Log_Instructions][bookmark: _Toc141967819]


[bookmark: _Toc210223382]Time Log Instructions
You will record all time that you spend for this User Stories Assignment using the Time Log Google Sheet that was shared with each member of your team. The spreadsheet has three tabs. 
[bookmark: _Toc141967820][bookmark: _Toc210223383]Individual Hours Tab
The second tab is “Individual Hours” as shown below. The first time you use the spreadsheet, you should type in your initials and name (the first person should replace my entry). Your total hours will be automatically calculated. Do not alter that field.
[image: E:\Data-Classes\CS 4321 - Fall 2017\project\a3.jpg]
[bookmark: _Toc141967821][bookmark: _Toc210223384]Activity Codes Tab
The third tab is “Activity Codes” as shown below. You will use one of these codes to allocate each increment of time that you contribute to the project.
	Activity Codes

	
	You will record all time (including thinking, meetings, etc) that you spend for this project using the Time Log tab on this spreadsheet. Use the Activity Codes below to indicate how your time was spent.

	
	

	Code
	Task

	D
	Any activity related to the analysis or design

	C
	Any activity related to coding

	T
	Any activity related to testing

	P
	Any activity related to presentations

	O
	Any other activity


[bookmark: _Toc141967822][bookmark: _Toc210223385]Time Log Tab
The first tab is “Time Log” as shown below. Each time you work on the project you will make an entry by typing your initials, begin date and time, end date and time, interrupt time, activity code, and brief description of what you did. The total time and running total time will be automatically calculated. Do not alter those fields.
The date/time field is formatted; however, you don’t have to enter these exactly as shown. For example, for the first entry shown below, typing: “6/5 9 am” will produce the result shown.
Interrupt time is time you were not working. For example, you may have worked from 11 am to 1 pm, and taken 20 minutes for a snack. Thus, for interrupt time you would enter: “0:20”. For this to work properly, you must enter “h:mm”.
	Time Log
	
	
	
	
	
	
	

	
	
	
	
	Automatically Calculated
	
	
	

	Initials
	Beg Date/Time
	End Date/Time
	Int.Time
	Tot Time
	Run Total
	Act Code
	Description of Activity

	
	06/05 09:00 AM
	06/05 09:00 AM
	0:00
	0:00
	0:00
	D
	

	dg
	06/05 09:00 AM
	06/05 09:06 AM
	0:01
	0:05
	0:05
	D
	Project overview in class

	
	
	
	
	
	
	
	


[bookmark: _Toc210223386]Getting Started
This is what I recommend you do to get started on the project.
1. Individually, or as a group do the following:
a. Read this document carefully.
b. Read the user stories for Sprint 1 in US_LMS_Sprint1_teamX.xlsx carefully.
As you do these, take notes, identify questions, etc. The entire team should meet and discuss any questions you have noted, clarify a mutual understanding of requirements. However, don’t get bogged down into details – there will be time for that later. 
2. Important: 
· Setup a standing time to meet. I’d suggest at least 3 days a week. 
· Be specific about each team member’s assignment. 
· Hold each other accountable.
3. For the project, you are following an Agile Software Development Process with 2-3 sprints. Pick some number of user stories to start with. My suggestion, is not all 13. I’d probably pick the first 6. Or, possibly, the first 3. Read through these and determine:
a. Domain classes needed – quick class diagram by hand is recommended.
b. Controller classes needed
c. Design of Gui – quick sketch on paper is recommended.
d. System Tests – specification. This should be documented as described above.
e. System level tests – code.
4. Identify an initial set of tasks and enter them into GitHub Project, and assign them to team members.
Note: 
· A user story may be a single task (if estimated to be <= 4 hours), but more usually, it may be several or many tasks. 
· Tasks may be to research something needed, e.g. GUI, or how to work with text files
· Tasks may be related to planning and specifying system tests. Ideally, this should be done immediately so that as a developer finishes a user story, it can be tested. And, as stated in the course, this ensures that the developer writes just enough code to pass the test.
5. Start working on tasks, move tasks on Project Board from To Do to Doing and eventually to Done. Return to Step 3.

3

image1.jpeg
Individual Hours

Initials
dg

Name
Dave Gibson

Automatically Calculated

Total Hours

0:05
0:00
0:00
0:00




