19.6 – AA-Trees

1. Interactive demo of a number of tree structures: http://people.ksp.sk/~kuko/bak/

2. An AA-tree is a red-black tree such that no left child is red (i.e red nodes must be right children). This restriction greatly simplifies the insert and remove algorithms.

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\aa1.jpg]

3. The implementation of this idea is simplified by re-introducing balance information in the following way:

a. Red children are at the same level as their parent
b. Black children are below their parent

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\aa2.jpg]

4. The level of a node is the number of left links on the path to a null node. An AA-tree can then be defined as follows. The level of a node is:

a. 1, if the node is a leaf
b. the level of its parent, if node is red
c. one less than the level of its parent, if node is black

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\aa3.jpg]

In an AA-tree, with the addition of the level information, we no longer need the red/black coloring information, so it is eliminated from the coming algorithms. We will retain it in some of the pictures for emphasis.

5. Implications of definition

a. Left children must be one level lower than parent. (Left can’t be red).
b. Right children can be at same level as parent (if red), or below (if black)

A horizontal link indicates two nodes at the same level. Horizontal links must be right links (only right children can be red, and red’s are at the same level as parent)

[image: D:\gifs\weiss19-54.gif]
c. There cannot be two consecutive horizontal links (can’t have 2 be two consecutive red nodes)
d. Nodes at level 2 or higher must have 2 children
e. If a node does not have a right horizontal link, then its two children are on the same level.

6. As with the Red-Black tree, we always insert a red node. This can lead to two types of problems. Consider inserting 2 or 45 into the tree above.

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\aa4.jpg]

Thus, when we insert a node, there are three cases:

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\b3.jpg]

a. Case 1 – If the node to insert is to the right of its parent, then we insert it at the same level, as a horizontal (right) link. If the grandparent is at a higher level, then we are done.

b. Case 2 – If the node to insert is to the left of its parent, then it will be at the same level as its parent, which is a violation. To fix a horizontal left link, we use a procedure called skew.

[image: D:\gifs\weiss19-55.gif]

Example:

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\b4.jpg]

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\b2.jpg]

c. Case 3 – If the grandparent is at the same level, then we have 2 consecutive horizontal links (reds), which is a violation. This is fixed by a procedure called split.

[image: D:\gifs\weiss19-56.gif]

Example:
[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\b4.jpg]

[image: E:\Data-Classes\CS 3410 - Data Structures\Topics\Ch19\pics\b5.jpg]

7. Example: Sometimes a Split or Skew will introduce a new violation. So, we continue to Split or Skew until there are no violations.

[image: weiss19-57.gif 002307EEMacintosh HD B75E31B5:]

[image: D:\gifs\weiss19-58.gif]
[image: D:\gifs\weiss19-59.gif]
[image: D:\gifs\weiss19-60.gif]
[image: D:\gifs\weiss19-61.gif]
[image: D:\gifs\weiss19-62.gif]

8. Below is an algorithm for insert for AA-tree. This is not the way we would implement this, but it shows the overall idea.

		insert(key) : newNode
		{
				return insert(root, key)
		}

		insert(node, key) : newNode
		{
				while node is not null

				if key is less than node
						if node has left child
								Advance to left child: node = node.left
						else
								X = new Node(key)
								Connect node to new node: node.left = X
								Repeat until no violations:
										Skew if necessary
										Split if necessary
								return X

				if key is greater than node
						if node has right child
								Advance to right child: node = node.right
						else
								X = new Node(key)
								Connect node to new node: node.right = X
								Repeat until no violations:
										Skew if necessary
										Split if necessary
								return X

9. Example: Build this tree:

[image: D:\gifs\weiss19-54.gif]
Homework 19.12

1. Build an AA tree by inserting nodes in this order: 1,2,3,4,5,6,7,8,9

38

image2.jpeg
AA-Tree €]

image3.jpeg
Levelsin 3
AA-Tree

image4.png
figure 19.54

AA-tree resulting from
the insertion of 10,
85, 15,70, 20, 60, 30
50, 65, 80, 90, 40, 5,
55, and 35

image5.jpeg
Violation:
horizontal
left link
(left red)

Violation:

2 consecutive
horizontal links

(2 consecutive reds)

image6.jpeg
Case 1 Case 2 Case 3

i insert(45
insert(25) insert(17) (45)

image7.png
figure 19.55

The skew procedure is e o e 0
a simple rotation

between X and P. —_—

image8.jpeg
insert(17)

Case 2 Violation

image9.jpeg
After Skew

image10.png
figure 19.56

The split procedure
is a simple rotation
between X and R;
note that R's level
increases.

o

®

image11.jpeg
Case 3 Violation

image12.jpeg
After Split

image13.png
figure 19.57

After insertion of 45
in the sample tree;
consecutive horizontal
links are introduced,
starting at 35.

image14.png
figure 19.58

After split at 35;a
left horizontal link at
50 is introduced.

image15.png
figure 19.59

After skew at 50;
consecutive horizontal
nodes are introduced
starting at 40,

image16.png
figure 19.60

After split at 40; 50
is now on the same
level as 70, inducing
an illegal left
horizontal link.

image17.png
figure 19.61

After skew at 70;
consecutive horizontal
links are introduced,
starting at 30.

image18.png
figure 19.62

After split at 30; the
insertion is complete.

image1.jpeg
AA-Tree
(Red-Black Tree Depiction)

