
1 
 

CS 3410 - Homework 06 
 
Due date: see course Schedule and Blackboard. 
 
Overview 
 
You will use a Heap (PriorityQueue) to place items into boxes. 
 
Requirements – C Version (75 points maximum) 
 
1. Obtain the download, hw6.zip. There, you will find BinaryHeap.java and two other required files. The 

BinaryHeap file contains a main where you will write your code (or write a driver). 
 

2. Do problem 21.25 a with the following additional requirements 
 
a. Read the input (doubles) from a text file: 𝑤� 𝑤� 𝑤� … Hint: you will need: BinaryHeap<Double> 
b. Print the results in the following format: 
 

Box 1 – weight = 0.8, contents: 0.1, 0.1, 0.1, 0.2, 0.3 
Box 2 – weight = 0.7, contents: 0.3, 0.4 
etc. 

 
Requirements – B Version (85 points maximum) 
 
1. Same as C version with this additional requirement: 

 
c. Create an Item class that implements Comparable. An Item has a weight property. When a weight is read, 

create with an Item and insert it in the heap. Hint: you will need: BinaryHeap<Item>. 
 

Requirements – A Version (100 points maximum) 
 
1. Same as B version with these additional requirements. 

 
d. You will implement a closest-to-average heap. When an item is removed from this heap, it will be the item 

that is closest (in absolute value) to the (current) average weight. As soon as an item is removed, the 
average of course changes and so buildHeap must be called. Thus, you will no longer rely on Comparable. 
Similarly, each time a weight is added, the average will change and buildHeap will have to be called. You 
might consider using the constructor that takes a collection. For example, with the input: 0.4, 0.4, 0.6, 0.6, 
the C version will use 3 boxes: 1 (0.4,0.4), 2(0.6), 3(0.6). This version will create 2 boxes: 1(0.4,0.6), 
2(0.4,0.6). Hint: think carefully about this. When an item is inserted, it is easy to update the average, but we 
no longer need to bubble up the hole because there is no guarantee that the closest item will end up at the 
root. Similar for remove. 
 

e. Utilize an Item class and a Box class where a Box can contain any number of Item instances. Implement a 
toString method on each class and use it to print the results. Note: you can remove the Comparable 
requirement from the BinaryHeap class or you can make your Item class implement Comparable, though 
comparable will no longer be used. 

 



2 
 

f. (10 extra points) Explain, in terms of complexity, why this method would be faster than a method where we 
utilize a sorted list at every stage. 

 
Deliverables 
 

1. (if applicable) A Word document in this format: 
a. Title page: 

CS 3410 – HW 06 
Name 
Date 

b. Answers to question(s). 
 

2. All Code. 
 

3. Email me a zip file, hw06-lastname.zip with these items. 
 


