Lab 4 – ASP.NET Basics 1b

Contents
1	Lab Objectives	1
2	Create Lab 4 Home Page	2
3	Hide/Show Elements & Panels	2
4	Accessing Items in a DropDownList	4
5	Illustrate why the Value needs to be Unique	6
6	Add Items to a DropDownList	7
7	Remove an Item from a DropDownList	7
8	Defining an Event Handler for a DropDownList, Order of Events, AutoPostBack	8
9	Using a ListBox	9
10	Using a CheckBoxList	12
11	Using a RadioButtonList	12
12	Using a Calendar	13
13	Package Assignment for Submission	13

[bookmark: _Toc94960376]Lab Objectives
1. Learn to use these web controls: Panel, DropDownList, ListBox, CheckBoxList, RadioButtonList
2. Learn what the AutoPostBack property does and when to set it to true.
3. Learn the order of how events are executed on the server.
4. Learn to hide and show controls.
To make this document easier to read, it is recommended that you turn off spell checking and grammar checking in Word:
1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

[bookmark: _Toc94960377]Create Lab 4 Home Page
1. Create your lab04 project (solution folder must be named lab04_lastName).

2. Add a web form named, default.

3. Add the HTML title: “Lab 4 – FirstName LastName”, substituting your name.

4. Write a level 2 header, inside the <div> tags, that reads: “Lab 4 – FirstName LastName”

5. Verify that your page displays correctly
[bookmark: _Toc94960378]Hide/Show Elements & Panels
6. Do the following:

a. Add a button to your page, give it the name (ID): btnHideShow and set the Text property to “Hide”.
b. Add a textbox to your page, give it the name: txtInput.
c. Create an event-handler for the button (double-click it in Design view).
d. Write the code to hide and show the textbox and change the text on the button. Your event handler will look like this:

protected void btnHideShow_Click(object sender, EventArgs e)
{
	if(txtInput.Visible)
	{
		txtInput.Visible = false;
		btnHideShow.Text = "Show";
	}
	else
	{
		txtInput.Visible = true;
		btnHideShow.Text = "Hide";
	}
}

e. Run your page and verify that it works correctly. Note: Right-click, View in Browser only works on as .aspx page, not on the code-behind file.

7. Do the following:

a. Add another button to your page below the first button (do not copy/paste the earlier one), give it the name (ID): btnHideShow2 and set the Text property to “Hide”.
b. Add a Panel to your page below the button. We will just use the default name, Panel1. Set the BorderSyle property to “Solid”.
c. Add a label and textbox inside the panel. No need to set any properties. Make sure the label and textbox are inside the panel. You can see this in Design mode, but you can also verify in Source mode
d. Create an event-handler for the new button (double-click it in Design view).
e. Write the code to hide and show the panel changing the text on the button. Your event handler will look like this:

protected void btnHideShow2_Click(object sender, EventArgs e)
{
	if (Panel1.Visible)
	{
		Panel1.Visible = false;
		btnHideShow2.Text = "Show";
	}
	else
	{
		Panel1.Visible = true;
		btnHideShow2.Text = "Hide";
	}
}

Note that this code will hide and show the panel (and anything in it).

f. Run your page and verify that it works correctly.

g. The panel is a bit “severe”, spans the width of the page, and hugs the components inside tightly. You can improve that with a bit of jQuery. Add this to the head section:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script>
	$(document).ready(function () {
		// Get width of label and textbox
		var lblWidth = $('#Label1').width();
		var txtWidth = $('#TextBox1').width();
		// Set width of panel to 20% larger than the sum of components width
		$('#Panel1').width(lblWidth + txtWidth * 1.20);
		// Set padding around panel
		$('#Panel1').css({ 'padding': '10px' });
	});
</script>

h. Run your page and observe the difference in formatting. Note: I won’t be requiring you to do formatting like this on your assignments.

[bookmark: _Toc94960379]Accessing Items in a DropDownList
8. Add a web form named, page2.

9. Link page2 to default and visa-versa. Do the following:

a. Open default (not page2) in Design view. Drag a HyperLink control from the ToolBox on the page, just below your name at the top.
b. Set the Text property to: “Page 2”
c. Set the NaviageUrl property to: “page2.aspx” (Note: if you navigate to the page instead of typing it in, it will show this property as: “~/page2.aspx”. The tilde means the “home directory”, which is the folder we are in. Thus, the tilde is not necessary.
d. Open page2 in Design view and create a HyperLink back to default.aspx. Set the Text property to: “Back”.

10. Run either page and verify that you can navigate back and forth between the two pages.

11. [image:]Do the following on page2:

a. Add a Button, set the name to btnDisplayAll, and set Text to: “Display All”.
b. Beside the button, add a DropDownList, set the name to ddlNames.
c. Find the Items property in the Properties window and expand the ellipsis.
d. The ListItem Collection Editor is displayed. Press, Add in the lower-left and type in the Text: “Jones” and the Value: “38”.
e. Add several more entries (ListItems). Use the ones shown below so that I can refer to these later without confusion.

	Text
	Value

	Able
	22

	Mackey
	47

	Benton
	11

f. Run your page and verify that you can choose a name from the drop down.

12. [image: E:\Data-Classes\CS 3340 - Web Programming\Topics\02_ASP.NET_Basics\dd.jpg](Read, no action required) Consider the class diagram on the right:

· A DropDownList has a list (named, Items) of ListItem.
· Each ListItem has a Text and Value (and two others) property.
· The Text property is what is displayed when the page is executed.
· The Value is what uniquely identifies the ListItem.
· The Value should be unique to ensure proper operation. The Value is almost always a key field from a database (which is always unique). The idea is that when the user selects an item from the drop down, then the code can retrieve the associated Value and then use that to look up additional information in a database. For example, we may have a drop down displaying a list of employee names (Text property) and the associated Value is the (unique) employee Id. Then, when a name is selected, we use the employee Id to look up and display their pay records. We consider the integration with a database later in the semester.
· We will consider the other properties shown for the DropDownList as we move along.
· All of the bullets above are true not only for a DropDownList, but also for a ListBox, RadioButtonList, and a CheckBoxList.

13. Do the following:

a. Add a TextBox below the button and drop down. Set the name to, txtMessage.
b. Set the TextMode property to MultiLine
c. Stretch the TextBox a bit larger. We will be outputting text there.

14. Do the following:

a. Create an event handler for the button (double-click it)
b. Type or add this code to the event handler

protected void btnDisplayAll_Click(object sender, EventArgs e)
{
	string msg = string.Empty;
	foreach (ListItem li in ddlNames.Items)
	{
		msg += "Text: " + li.Text + ", "
			+ "Value: " + li.Value + ", "
			+ "Selected: " + li.Selected
			+ Environment.NewLine;
	}
	txtMessage.Text = msg;
}

Note:

· string is an alias for String. You can use either.
· C# provides a foreach loop, which in this case would be identical to this in Java:

for(ListItem li : ddlNames.Items)

· The code simply loops through all the ListItem objects in ddlNames.Items list and collects various properties in a message which is displayed in the multi-line textbox.
· A ListItem has a Selected property that tells whether it has been selected or not.

c. Run your page and verify that the button works properly. Select a name from the dropdown and press the button again. Notice that the name you selected has the Selected property set to true.

15. Do the following:

a. Add a Button to page2 beside the other button. Set the name to btnDisplaySelected, and set Text to: “Display Selected”.
b. Create an event handler for the button (double-click it)
c. Type or add this code to the event handler

protected void btnDisplaySelected_Click(object sender, EventArgs e)
{
	ListItem li = ddlNames.SelectedItem;
	string msg = "Text: " + li.Text + ", "
		+ "Value: " + li.Value + ", "
		+ "Selected: " + li.Selected;
	txtMessage.Text = msg;
}

Note:

· This event handler only displays the selected ListItem.
· The DropDownList has a SelectedItem property which is the ListItem object that has been selected. Thus, this is a convenience method as you could have looped through all the ListItems to find which one was selected. In other words, this code would produce identical results:

string msg = string.Empty;
foreach (ListItem li in ddlNames.Items)
{
	if(li.Selected)
	{
		msg += "Text: " + li.Text + ", "
				+ "Value: " + li.Value + ", "
				+ "Selected: " + li.Selected
				+ Environment.NewLine;
		break;
	}
}
txtMessage.Text = msg;

d. Run your page and alternately select a name, press a button, and then press the other button; repeat. Do this to understand how the DropDownList remembers which ListItem is selected.

[bookmark: _Toc94960380]Illustrate why the Value needs to be Unique

16. Do the following:

a. Select the DropDownList and expand the Items property.
b. Change the last name, Benton, to have a Value of 38. Notice that the first item also has a Value of 38.
c. Run the page, select the last name, Benton and then press, Display Selected
d. You’ll notice that Jones is displayed. The internal event (inside the drop down) that marks the item as selected finds the first item with a matching value. That probably seems a little strange. However, it does illustrate that the Value property needs to be unique.
e. Change the Value for Benton back to the value it was before, or something unique, say 99.

[bookmark: _Toc94960381]Add Items to a DropDownList
17. Do the following:

a. [image:]Add a Button below the other buttons, and above the TextBox. Set the name to btnAdd and the Text to: “Add”.
b. Add a Label beside the button. Set the Text to: “Text”.
c. Add a TextBox beside the label. Set the name to txtText.
d. Add a Label beside the text box. Set the Text to: “Value”.
e. Add a TextBox beside the label. Set the name to txtValue.
f. Create an event handler for btnAdd (double-click)
g. Type or add the code below to the event handler, notice that I have changed to Java style “{“ on the end of line, so probably copy and replace the whole event handler:

protected void btnAdd_Click(object sender, EventArgs e) {
	if(!String.IsNullOrEmpty(txtText.Text) && !String.IsNullOrEmpty(txtValue.Text)) {
		string text = txtText.Text;
		string value = txtValue.Text;
		ListItem li = new ListItem(text, value);
		ddlNames.Items.Add(li);
		txtMessage.Text = "ListItem added to dropdown";
		txtText.Text = String.Empty;
		txtValue.Text = String.Empty;
	}
	else {
		txtMessage.Text = "Must supply a value for Text & Value";
	}

}

h. Study the code above carefully. Run the page and experiement.

[bookmark: _Toc94960382]Remove an Item from a DropDownList
18. Do the following:

a. Add a Button beside the “Display Selected” button. Set the name to btnRemoveSelected and the Text to: “Remove Selected”.
b. Create an event handler for the button and add or type this code:

protected void btnRemoveSelected_Click(object sender, EventArgs e) {
	if(ddlNames.SelectedItem != null) {
		ListItem li = ddlNames.SelectedItem;
		ddlNames.Items.Remove(li);
		txtMessage.Text = "ListItem removed: " + li.Text + ", " + li.Value;
	}
}

c. Run the page. Select a name and then choose: Remove Selected. Verify that the item was removed from the drop down. and verify that you can add an item to the drop down and when selected it works properly.

[bookmark: _Toc94960383]Defining an Event Handler for a DropDownList, Order of Events, AutoPostBack
19. Do the following:

a. Note that we have not defined an event handler for the DropDownList. For many applications you do not need one. For many applications you will have a Button that does something with the item selected. Thus, the button is the event handler.
b. Next, we will create an event handler for the drop down so that we can observe some behaviors that are not obvious.
c. Create an event handler for the drop down by double clicking it. It will create this event handler:

protected void ddlNames_SelectedIndexChanged(object sender, EventArgs e)
{

}

Notice that the name of the event is SelectedIndexChanged where as the Buttons have a Click event. Thus, SelectedIndexChanged is called when an item has been selected. However, there is a catch…

d. Add this code to the event handler:

ListItem li = ddlNames.SelectedItem;
string msg = Environment.NewLine + "In SelectedIndexChanged event" + Environment.NewLine
	+ " Text: " + li.Text + ", "
	+ "Value: " + li.Value + ", "
	+ "Selected: " + li.Selected;
txtMessage.Text += msg;

Notice the “+=” in the last line.

e. Replace the code in the Display Selected event handler (btnDisplaySelected_Click) with the code below.

ListItem li = ddlNames.SelectedItem;
string msg = Environment.NewLine + "In Click event" + Environment.NewLine
	+ " Text: " + li.Text + ", "
	+ "Value: " + li.Value + ", "
	+ "Selected: " + li.Selected;
txtMessage.Text += msg;

Notice the “+=” in the last line.

d. [image:]Run the page and do the following:

· Select a name from the drop down and observe that nothing happens.
· Press Display Selected. The output should look as shown on the right. Notice that both events occurred.

20. (Read, no action required)

· When you selected a name from the drop down, a SelectedIndexChanged event was registered but not executed.
· When you pressed the Display Selected button, the Click event was registered and both events were executed in the order they were registered.
· The button not only registered an event when pressed, it also caused a postback. A postback means that the page is sent back to the server, where all registered events are run, and then sent back to the browser. A Button always causes a postback.
· A DropDownList has an AutoPostBack property that is set to False by default. We will change this next. This will force the page to postback to the server whenever a name is selected.

21. Do the following:

a. Select the drop down and set its AutoPostBack property to True.
b. Run the page and do the following:

· Select a name from the drop down and observe that the SelectedIndexChanged event is executed immediately (because the when you selected a name it caused a postback).
· Continue to select names and also press Display Selected.

c. Select the drop down and set its AutoPostBack property to False.

[bookmark: _Toc94960384]Using a ListBox
22. Add a web form named, page3 and do the following:

a. Open default (not page3) in Design view. Drag a HyperLink control from the ToolBox on the page, just below your name at the top, beside the Page 2 link.
b. Set the Text property to: “Page 3”
c. Set the NaviageUrl property to: “page3.aspx”
d. Open page3 in Design view and create a HyperLink back to default.aspx. Set the Text property to: “Back”.
e. Run either page and verify that you can navigate back and forth between the two pages.

23. Add a button with name btnDisplay and Text set to “Display”.

24. Add a ListBox and

a. Set the name to lbxNames
b. Set the SelectMode property to Multiple. This control allows multiple items to be selected.
c. Expand the Items collection and add 5 or so names making sure the values are unique. I suggest using numbers.
d. Notice that the AutoPostBack property is False. Leave it that way.

25. Add a TextBox, set the name to txtMessage, set TextMode to “MultiLine”, and stretch it larger.

26. Create an event handler for the button and supply this code.

protected void btnDisplay_Click(object sender, EventArgs e)
{
	string msg = string.Empty;
	foreach (ListItem li in lbxNames.Items)
	{
		if(li.Selected)
		{
			msg += "Text: " + li.Text + ", "
				+ "Value: " + li.Value + ", "
				+ "Selected: " + li.Selected
				+ Environment.NewLine;
		}
	}
	txtMessage.Text = msg;
}

27. Run your page and verify.

28. Add a button between the Display button and the ListBox. Set the name to btnRemove and Text set to “Remove Selected”.

29. Create an event handler for the button and supply this code.

protected void btnRemoveSelected_Click(object sender, EventArgs e) {
	string msg = "Items removed:" + Environment.NewLine;
	for (int i = 0; i < lbxNames.Items.Count; i++) {
		ListItem li = lbxNames.Items[i];
		if (li.Selected) {
			lbxNames.Items.Remove(li);
			msg += "Text: " + li.Text + Environment.NewLine;
		}
	}
	txtMessage.Text = msg;
}

Note:
· We are using an indexed loop to iterate over the Items. The reason is the same as Java, you can’t modify a collection when using a foreach loop.
· The Items property (the list of ListItems) has a Count property, which is equivalent to size() in Java
· We access the current ListItem with a new syntax:

ListItem li = lbxNames.Items[i];

The notation looks like Java’s array notation and in some respects it is. However, Items is actually a structure called an indexer (Java does not have this). An indexer is essentially a structure somewhere between an array and a list. We will consider this further in class.
· The code above compiles, but is not correct! We see this next.

30. Do the following:

a. Run your page.
b. Select the first two names.
c. Press the Remove Selected button.
d. Verify that only the first item was removed.
e. Close your page and run again.
f. Select the first and third names.
g. Press the Remove Selected button.
h. Verify that both names were removed.

Can you figure out why this code performed incorrectly when the first two items were selected? If you took CS 1302 from me, we illustrated this when we considered removing items from an ArrayList using an indexed loop.

Here’s the problem: all the ListItems have an index: 0, 1, …. So, when the loop is on i=0, that item is selected and so it is removed properly. However, once it is removed, all the other items are re-indexed. Thus, the second item, which had index=1, changes to index=0, etc. In the meantime, the loop increments i to 1. Thus, we skipped over the previously second item because it is now first. We fix this next, by iterating over the ListItems in reverse order.

31. Replace the code in the event handler with this code:

string msg = "Items removed:" + Environment.NewLine;
for (int i = lbxNames.Items.Count-1; i>=0; i--)
{
	ListItem li = lbxNames.Items[i];
	if (li.Selected)
	{
		lbxNames.Items.Remove(li);
		msg += "Text: " + li.Text + Environment.NewLine;
	}
}
txtMessage.Text = msg;

By iterating in reverse order, when we remove a ListItem, the only items that are re-indexed are ones that we have previously processed in the loop. Thus, we don’t skip any selected items.

32. Run your page, experiment, and verify that the code is running correctly. To experiment thoroughly, you should rerun your page from VS several times.

[bookmark: _Toc94960385]Using a CheckBoxList

33. Add a web form named, page4 and link this page to default and link default to this page.

34. Add a CheckBoxList to page4 and do the following:

a. Set the name to cblTeams
b. Set the RepeatDirection property to Horizontal.
c. Expand the Items collection and add 5 or so teams. Make the Text the school name (e.g. VSU) and the Value the sports name (e.g. Blazers).
d. Notice that the AutoPostBack property is False. Leave it that way.

35. Add a button with name btnDisplay and Text set to “Display”.

36. Add a TextBox, set the name to txtMessage, set TextMode to “MultiLine”, and stretch it larger.
37. Create an event handler for the button and supply this code.

protected void btnDisplay_Click(object sender, EventArgs e)
{
	string msg = "Your favorite teams are:" + Environment.NewLine;
	foreach (ListItem li in cblTeams.Items)
	{
		if (li.Selected)
		{
			msg += "Text: " + li.Text + ", "
				+ "Value: " + li.Value + ", "
				+ "Selected: " + li.Selected
				+ Environment.NewLine;
		}
	}
	txtMessage.Text = msg;
}

38. Run your page and verify.

[bookmark: _Toc94960386]Using a RadioButtonList

39. Add a web form named, page5 and link this page to default and link default to this page. Warning: do not copy/paste page4 in the SE. It will not work correctly.

40. Make an example similar to the previous stage (CheckBoxList) except use a RadioButtonList. Hint: you do not have to loop through all the radio buttons to see which one is selected. In a RadioButtonList, only one item can be selected. Thus, in your event handler, simply use the SelectedItem property of the RadioButtonList.

[bookmark: _Toc94960387]Using a Calendar

41. Add a web form named, page6 and link this page to default and link default to this page.
42. Add a button with name btnDisplay and Text set to “Display”.
43. Add a Calendar with name cal and verify that SelectionMode is set to “Day”.
44. Add a TextBox, set the name to txtMessage, set TextMode to “MultiLine”, and stretch it larger.

45. Create an event handler for the button and supply this code:

DateTime date = cal.SelectedDate;
string msg = "Date properties" + Environment.NewLine;
msg += "Short date string:" + date.ToShortDateString() + Environment.NewLine;
msg += "Day:" + date.Day;
msg += ", Month:" + date.Month;
msg += ", Year:" + date.Year + Environment.NewLine;
msg += "Day of week:" + date.DayOfWeek + Environment.NewLine;
msg += "Day of year:" + date.DayOfYear + Environment.NewLine;

// Illustrates the AddDays method
DateTime date2 = date.AddDays(3);
msg += "3 days from now:" + date2.ToShortDateString() + Environment.NewLine;

txtMessage.Text = msg;

46. Run, select a date, press the button and observe the output.

[bookmark: _Toc94960388]Package Assignment for Submission

47. Close VS and zip your lab04_lastName solution folder and submit on Blazeview in the Lab 04 dropbox.

If you need further directions, follow step 10 from Lab 1, exactly, substituting lab04 for lab01.

	To avoid a deduction of points, verify the following:

i. The name of your zip file is: lab04_lastName (your last name, of course).
ii. Inside the zip file, verify that your lab04_lastName solution folder is indeed named: lab03_lastName
iii. Inside your lab04_lastName solution folder there should be:

· A lab04_lastName.sln file
· The page(s) you developed
· Some other files & folders.

30

image3.png
[localhost:7380/page2.aspx

x

+

& 5 C O O localhost7380/page2aspx @ ¥ @ ¥

»

Display All || Display Selected |[Jones v |

Add | Text [Dave

Value |99

image4.png
[localhost:7380/page2.aspx x +

& 5 C O O localhost7380/page2aspx @ v @ @

[E]

=

Display All || Display Selected || Remove Selected || Mackey v

Value

In SelectedIndexChanged event
Text: Mackey, Value: 47, Selected: True

In Click event
Text: Mackey, Value: 47, Selected: True

image1.png
Members: Jones properties:

: [+]
[+]

oK Cancel

image2.jpeg
DropDownlList
ListBox
RadioButtonList
CheckBoxList

Items *

e

Listitem

Selectedltem

et s

AutoPostBack:Boolean
Items:ListitemCollection
Selectedindex:Int
Selectedltem:Listitem
SelectedValue:String

Selected:Boolean
Text:String
Value:String

SelectedindexChanged

