Chapter 1 – Classes & Objects
Contents
1	Introduction	3
2	Class Modelling	4
3	Instance Variables & Methods	5
4	More on Classes	7
4.1	Exercises	7
5	Introduction to Constructors	8
5.1	Exercises	8
6	Instance Variables, Getters, & Setters	9
6.1	private Instance Variables	9
6.2	Getters	10
6.3	Setters	13
6.4	Exercises	14
7	Array Instance Variables & Indexed Getters & Setters	15
7.1	An Array Instance Variable	15
7.2	Indexed Getter	15
7.3	Indexed Setter	16
8	The this Reference	17
8.1	Exercises	17
9	The toString Method	17
9.1	Exercises	18
10	Testing a Class	19
10.1	Exercises	21
11	Class & Object Diagrams	23
12	Best Practices – Naming Conventions	24
12.1	Exercises	25
13	Best Practices – Writing Classes	25
14	The String.format Method	26
14.1	Exercises	28
15	Helper Methods	29
16	Accessing Objects via Reference Variables	30
17	The null Keyword	32
18	Using this With Multiple Constructors	33
18.1	Exercises	34
19	Passing Objects to Methods	34
19.1	Exercises	36
20	Arrays of Objects	37
20.1	Exercises	39
21	Immutability	40
22	Data Encapsulation	42
23	Packages & Accessibility (Visibility) of Classes & Members	43
24	Static & Final Variables & Methods	45
24.1	Static Variables - static	45
24.2	Constants – final	47
24.3	Class Constants – static final	48
24.4	Static & Final Variable Summary	48
24.5	Static Methods	48
24.6	References	49
25	Chapter Summary	49
Appendix 1	String & Characters	51
Appendix 1.1	Characters	51
Appendix 1.2	Strings	51
Appendix 1.3	String Comparison Methods	53
Appendix 1.4	Substring Methods	55
Appendix 1.5	Conversion of other Types to String	55
Appendix 1.6	String Location Methods	55
Appendix 2	The BoxUtilities Class	57
Appendix 3	The Enhanced For Loop (aka The for-each Loop)	59
Appendix 4	State Information for a Network Printer	61

To make this document easier to read, it is recommended that you turn off spell checking and grammar checking in Word:

1. Choose: File, Option, Proofing
1. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

[bookmark: _Toc176008520]Introduction
In CS 1301 you learned the basics of programming: variables, data types, selection, loops, methods, arrays, etc. to solve small problems. In addition, you also learned how to use a few classes from the Java API[footnoteRef:1] to help you solve problems: Math, String, and Scanner. For example, you used the Scanner class to read data from the console: [1: The Java API contains more than 4000 classes that we can use to help us solve problems.]

[image:]
Review:
· The scanner object is created from the Scanner class’s constructor.
· The scanner object is used to provide services by having methods called on it.
· *The scanner variable is not actually an object. It is actually a variable that holds a reference (pointer) to a Scanner object that exists elsewhere in memory. We will discuss this important distinction later.
To solve larger problems, a popular approach is to use object-oriented programming (OOP or just OO). OOP means, in addition to using the basics of programming, and classes from the Java API, we also write our own, custom classes and use them to help solve problems.
Most of the first half of this course is course is concerned with writing and testing classes. Later in the course, when we cover graphical user interfaces (Gui), we will use these classes to solve problems.

[bookmark: _Toc176008521]Class Modelling
OO problem solving is a little different than the approach you used in CS 1301. The first thing we do is class modelling which involves figuring out what classes we need to write. We do this by identifying the natural objects (entities, “things”) that are present in the problem domain. Objects are usually nouns. A few examples are shown below.
	Problem Domain
	Possible Objects

	Basketball Simulation
	Player, Referee, Ball, Court, ScoreBoard, etc

	Amazon
	Product, Shopping Cart, Order, Account, Customer, etc

	Banking System
	Account, Customer, Employee, Bank, etc

	University Registration System
	Course, Class, Student, Professor, GradeBook, etc

Next, to write an OO program, we need a way to represent these natural objects as entities in our program. We do this by defining a class for each type of object. A class is a formal Java construct. For example, the code below defines an Account class. It is not very useful yet, but it is a valid class.

public class Account {
}
Each class is typically stored in its own file. The name of the file must be the same as the class with a .java file extension. For example, the Account class would be stored in a file named, Account.java.
So, what exactly is a class? A class is a way to represent:
· The state (the current conditions, data) that an object has
· The behavior (the things it can do) that an object has
[image:]Note that elements of the state are usually nouns, and behaviors are usually verb phrases. For example, consider an Account class that is used to model a bank account. Some elements of the state and behaviors might be:
State – Account number, Account owners name, current balance, list of deposits, list of charges (ATM, debit transactions, checks, etc.), status (good standing or overdrawn), etc.
Behaviors – Deposit funds, withdraw funds, apply interest, apply service charges, generate monthly statement, etc.
As shown in the figure on the right, we usually document class modelling with a class diagram. An important feature of a class is that it encapsulates the state and behaviors into a single unit, the Account class.

[bookmark: _Hlk78803751][bookmark: _Toc176008522]Instance Variables & Methods
The code for this class is shown below (see example_account/Account1.java in code download):
Consider this simplified description of an Account class:
Write an (checking) Account class that keeps track of the balance of the account. It provides a way to deposit an amount of money. If the amount is positive, then the balance is increased by this amount; otherwise, no change is made to the balance. Similarly, the class provides a way to withdraw an amount of money, which, if positive, decreases the balance by this amount.
[image:]Here, the state is simply the balance of the account, and two behaviors are: deposit and withdraw as shown in the class diagram on the right.
Next, we need to consider how we write code for state and behaviors?
· State (also called properties or attributes) is implemented with instance variables (also called data fields or fields) and are similar to the variables you have used in programs previously.
· Behavior (also called services, responsibilities) is implemented with methods.
public class Account {
	public double balance;
	
	public void deposit(double amount) {
		if(amount>0) {
			balance += amount;
		}
	}

	public void withdraw(double amount) {
		if(amount>0) {
			balance -= amount;
		}
	}
}
Note:
· The balance instance variable is the “memory” of the class, it remembers the value of the balance at all times.
· An instance variable is available anywhere in the class. For example, in the deposit method, the balance instance variable is updated by the parameter, amount.
· Everything is declared with public visibility. All Java entities (classes, methods, instance variables) can have a visibility modifier prefacing the declaration. public visibility means that the entity can be seen by other classes (as well as inside the class itself). We will address visibility several more times in this chapter.
A class can have data fields that are primitive data type or reference data types (String is the only one we know now). Primitive data types take on the default values of 0 for numeric types and false for boolean. Reference data types take on, by default, the special literal value, null, which we discuss in another section.

A class is a blueprint (or template) for creating objects and we use objects to write programs. For example:
[image:]
Note:
· To create an object, we use a constructor preceded by the new keyword. Thus, a constructor’s job is to create an object (also called an instance).
· In the Account class above, we did not define (write) a constructor; however, Java provides one implicitly. We learn to write our own constructors shortly. The constructor above is called a no-arg constructor because it does not accept any arguments.
· We use the class (Account) as the datatype for the account object. The account object is really just a variable and so it must have a data type specified. We use the class of the object as the data type.
We can use the account object above to access the instance variables or methods by invoking the dot operator. The general syntax is:
· object.instanceVariable
· object.method(arguments)
For example, we could write a main with code like this:
[bookmark: _Hlk59096119]public static void main(String[] args) {
	Account account = new Account();
	account.deposit(1000.0);
	account.withdraw(400.0);
	System.out.println("bal=" + account.balance); // 600.0
}
Some observations:
· A class is a way to group together related data and methods. This is called encapsulation meaning that we have one “unit”, the Account class that holds the data and methods.
· The methods do something with or to the data. For example, the deposit method changes the balance by adding amount (1000 in the example above).
· The data is inside the object. For example, when we want the current balance, we access it by: account.balance.

[bookmark: _Toc176008523]More on Classes
The three components of a class are:
· Instance variables – information that the class stores.
· Methods – do something with or to the instance variables.
· Constructors – used to create an object from the class, giving the instance variables an initial value.
Collectively, we call these the members of a class. Each of the components is optional; however, most classes will have all three.
Modelling is the art of deciding what classes are needed to solve a problem, what the state and behavior of each is, and how the classes are associated with one another (this last aspect is considered in the next chapter). Modelling is a skill that takes a lot of practice. In this class I will almost always tell you (in English, or in a class diagram) what classes are needed and what the state and behaviors are and you will be responsible for writing the class.
Even the smallest of real systems will have 6 or more classes. Large systems could have hundreds. The group project for software engineering (CS 4321) typically has 10-25 classes.
Some simple examples of classes are shown below, whose state and behaviors should be self-explanatory. Of course, the actual state and behavior would depend on the context of the problem you are solving.

[image:]
Appendix 4 shows the state information for a network printer.
[bookmark: _Hlk78803997][bookmark: _Toc176008524]Exercises
1. (Solution in exercise_piggy_bank package, PiggyBankVer1 class) Write a class, PiggyBank to represent a piggy bank. This class should have instance variables to represent the number of quarters, dimes, and nickels (we will ignore pennies). This class also has a method, getTotal which returns the total amount of money in the bank. Also write code in main to create a piggy bank object, add some money (quarters, dimes, and nickels), and finally, print out the total in the bank with an informative message showing the total amount of money in the bank (calling the method to retrieve to total).
2. (Solution in exercise_cellular_account package, CellularAccountVer1 class) Write a class, CellularAccount to represent an account a person would have for cell phone service. The class has these instance variables: (a) minutesUsed which is the number of minutes of cell service that has been used, (b) costPerMin which is the cost ($) per minute of cell phone service, (c) minutesMax which is the maximum number of minutes allowed for this account. The class also has a method, getAmountDue that returns the total charges for the account. All minutes used less than or equal to minutesMax are charged at the costPerMin rate. Any minutes over minutesMax are charged at a rate 40% higher than the base rate, costPerMin. For example:
Example 1: Suppose minutesUsed = 300.0, minutesMax = 500.0, costPerMin=0.05, then:
getAmountDue() = 300*0.05 = $15.00
Example 2: Suppose minutesUsed = 600.0, minutesMax = 500.0, costPerMin=0.05, then:
getAmountDue() = 500*0.05 + 100*(1+0.4)*0.05= $25.00 + $7.00 = $32.00
Finally, write code in main to implement the two examples above.
[bookmark: _Toc176008525]Introduction to Constructors
For much of the remainder of this chapter, we will consider the Account class. As we learn new techniques, we will add to or change the class. The example below is found in example_account /Account2.java in the code download.
Every class should have an explicit constructor. A constructor is like a method but it has no return type and it must have the same name as the class. It is used to create an object. Its job is to give the instance variables an initial value. [image:]
For example, in the Account class below, we have added a constructor that defines a parameter, initBalance which represents the initial balance for the account when it is first created. The constructor takes this value and initializes the balance instance variable (it “remembers” the balance). We usually show the constructor at the top of the list of behaviors as shown in the class diagram above.
public class Account {
	public double balance;
	// Constructor
	public Account(double initBalance) {
		balance = initBalance;
	}
	public void deposit(double amount) {
		if(amount>0) {
			balance += amount;
		}
	}

	public void withdraw(double amount) {
		if(amount>0) {
			balance -= amount;
		}
	}
}
Now, when we create an Account object (account), we can pass in an initial balance as show below.
public static void main(String[] args) {
	Account account = new Account(1000.0);
	account.deposit(200.0);
	account.withdraw(400.0);
	System.out.println("bal=" + account.balance); // 800.0
}
[bookmark: _Toc176008526]Exercises
3. (Solution in exercise_piggy_bank package, PiggyBankVer2 class) Add a constructor to the PiggyBank class from an earlier Exercise that has a constructor that accepts the number of quarters, dimes, and nickels that are initially in the bank. Also write code to test. You should write two snippets (small pieces of code) to do the following:
a. Create a PiggyBank object initialized with 3 quarters, 2 dimes, and 3 nickels. Print out the total in the bank with an informative message showing the total amount of money in the bank (calling the method to retrieve to total).
b. Create a PiggyBank object initialized with 3 quarters, 2 dimes, and 3 nickels. Then add another quarter, another dime, and a nickel. Print out the total in the bank with an informative message showing the total amount of money in the bank (calling the method to retrieve to total).
4. (Solution in exercise_cellular_account package, CellularAccountVer2 class) Consider the CellularAccount class from an Exercise 2. Do the following:
a. Add a constructor that accepts minutesMax and costPerMin.
b. Write code in main to test the two examples from Exercise 2.
[bookmark: _Toc176008527]Instance Variables, Getters, & Setters
[bookmark: _Toc176008528]private Instance Variables
In the example above, we declared the balance instance variable with public visibility:
public double balance;
This means that any other class in our system can see this variable, and, can access it directly and change it. For example, in main directly above, we used the deposit and withdraw methods to change the balance. However, we could have directly changed the balance as the code below shows:
public class AccountTest {
	public static void main(String[] args) {
		Account account = new Account(1000.0);
		account.balance += 200.0;
		account.balance -= 400.0;
		System.out.println("bal=" + account.balance);
	}
}
This violates an important design principle:
Never let another class directly modify the value of an instance variable.
Defining instance variables as public is poor practice and never done in industry. Best practice, is to declare all instance variables to be private (for the time being). For example:
private double balance;
A private instance variable (or method) is only available (visible) inside the class itself. Thus, in the deposit method we wrote above, we can still access (and change) balance directly:
public void deposit(double amount) {
	balance += amount;
}
However, other classes that use this Account class will not be able to access balance directly. For example, if main were defined in another class, Account3Test, as shown in the figure below, the reference to: account.balance will not compile.
[image:]
From this point forward, all instance variables are declared as private. As we learn more visibility modifiers, this practice is modified to say that we declare instance variables with the least visibility as possible.

[bookmark: _Toc176008529]Getters
If we make all instance variables private, then we are going to need a way to see what the value of the balance is from outside the class. To do this, we write a public method that simply returns the balance. Such a method is called a getter (also called an accessor) for the instance variable. A getter, in its simplest form, simply returns the value of the instance variable. The syntax is:
public DataTypeOfInstanceVariable getInstanceVariable() {
	return instanceVariable;
}
For example:
public double getBalance() {
	return balance;
}
Note:
· A getter returns a copy (for primitive data types) of the instance variable. The true value is still inside the object. It does not allow the instance variable to be changed. We consider changing the value of an instance variable shortly, when we consider setters.
· The getter is declared public which means that any other class can use this method.
· Best practice is to name a getter: “get” + name of instance variable.
[image:]The class, with the addition of the getter, is shown below (see example_account/Account3.java and Account3Test in the code download).
public class Account {
	private double balance;
	public Account(double initBalance) {
		balance = initBalance;
	}
	public double getBalance() {
		return balance;
	}
	public void deposit(double amount) {
		if(amount>0) {
			balance += amount;
		}
	}
	public void withdraw(double amount) {
		if(amount>0) {
			balance -= amount;
		}
	}
}
Note that in main, we now use the getter, getBalance to access the value of balance
public static void main(String[] args) {
	Account3 account = new Account3(1000.0);
	account.deposit(200.0);
	account.withdraw(400.0);
	System.out.println("bal=" + account.getBalance());
	// What does this code do?
	double balance = account.getBalance();
	balance = 1000000;
	System.out.println("bal=" + account.getBalance());
}
This code displays:
bal=800.0
bal=800.0
The second-to-last and next-to-last lines (as repeated below) simply declare a local variable and assign it a large value. It does not change the balance that is inside the account object.
double balance = account.getBalance();
balance = 1000000;
Almost all instance variables will have a getter and most instance variables will be initialized through a parameter in the constructor.
public class Account {
	private double balance;
	
	public Account(double initBalance) {
		balance = initBalance;
	}
	public double getBalance() {
		return balance;
	}
...
}
However, sometimes, it doesn’t make sense to require a parameter in the constructor to initialize an instance variable. For example, suppose we want the Account class to keep track of the number of withdrawals that have been made. Then we need to introduce an instance variable, numWithdrawals and a getter, getNumWithdrawals. The constructor doesn’t need to define a parameter for this instance variable. Instead, it can just set its value to 0. (see example_account/Account4.java and Account4Test in the code download).
	Account Class
	Test Code

	public class Account {
 private double balance;
 private int numWithdrawals;
	
 public Account(double initBalance) {
	balance = initBalance;
	numWithdrawals = 0;
 }
	
 public int getNumWithdrawals() {
	return numWithdrawals;
 }
	
 public void withdraw(double amount) {
	if(amount>0) {
 	 balance -= amount;
	 numWithdrawals++;
	}
 }
 ...
}
	public static void main(String[] args) {
 Account account = new Account(1000.0);
 System.out.println(account.getNumWithdrawals()); // 0
 account.deposit(200.0);
 account.withdraw(400.0);
 System.out.println(account.getNumWithdrawals()); // 1
 account.withdraw(100.0);
 System.out.println(account.getNumWithdrawals()); // 2
}

We can create as many objects as we need in a program. For example, below, we create two Account objects, a1 and a2 which occupy separate places in memory. The diagrams on the right are called object diagrams and are used to show what is in memory as the program is running.
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\c3.jpg]
[bookmark: _An_Array_Instance]

[bookmark: _Toc176008530]Setters
If we want to provide a way to change the value of a private instance variable, we write a method called a setter (also called a mutator). A setter, is a method that replaces the value of an instance variable with a new value that is supplied as an argument to the setter. The syntax is:
public void setInstanceVariable(DataType newValue) {
instanceVariable = newValue;
}
The convention for naming a setter is: “set” + the name of the instance variable.
For example, in the Account class, let’s introduce an instance variable for the name of the owner of the account.
private String owner;
Then, define a getter as usual, and also define a setter so that the name can be changed:
	Getter
	Setter

	public String getOwner() {
	return owner;
}
	public void setOwner(String newOwner) {
	owner = newOwner;
}

[image:]A portion of the new class is shown below. Note that we have also added the name to the constructor (see example_account/Account5.java and Account5Test in code download).
public class Account {
	private double balance;
	private int numWithdrawals;
	private String owner;
	
	public Account(double initBalance, String name) {
		balance = initBalance;
		owner = name;
		numWithdrawals = 0;
	}
	
	public String getOwner() {
		return owner;
	}

	public void setOwner(String name) {
		owner = name;
	}
...
}
We could use the class above, with code like this:
public static void main(String[] args) {
	Account a = new Account(500.0, "Xavier");
	System.out.println("Name=" + a.getOwner()); // Xavier
	a.setOwner("Marco");
	System.out.println("Name=" + a.getOwner()); // Marco

}
You may ask why we didn’t define a setter for the balance. There are two main reasons. First, we don’t need one. The withdraw and deposit methods allow the balance to be changed. Second, we probably don’t want to allow the balance to be changed except through these two methods (and perhaps others, like: applyInterest). In other words, we don’t want to let clients (other code) to just set the balance to some arbitrary value, e.g. account.setBalance(1000000.0). This is called defensive design.
[bookmark: _Toc176008531]Exercises
5. (Solution in exercise_piggy_bank package, PiggyBankVer3 class) Change the PiggyBank class from an earlier Exercise so that:
a.
· All instance variables are private.
· All instance variables have a getter.
· All instance variables have a setter.

b. Write code in main to test these new methods in the following way:

· Create a PiggyBank object initialized with 3 quarters, 2 dimes, and 3 nickels.
· Then, add 2 quarters. You could do this with this code:

PiggyBank pBank = new PiggyBank(3,2,3);
pBank.setNumQuarters(5);

However, this is not a good solution because we are using knowledge that is in our head of how many quarters are already in the bank. It is much better to assume we don’t know how many quarters there are in the bank. Remember, we were asked to “add 2 quarters”. Thus, a better solution is:

PiggyBank pBank = new PiggyBank(3,2,3);
int numQuarters = pBank.getNumQuarters() + 2;
pBank.setNumQuarters(numQuarters);

· Add 3 nickels
· Print out the total in the bank with an informative message showing the total amount of money in the bank (calling the method to retrieve to total).
6. (Solution in exercise_cellular_account package, CellularAccountVer3 class) Consider the CellularAccount class from an Exercise 2. Do the following:
a. All instance variables are private.
b. The minutesMax and costPerMin instance variables have getters and setters.
c. The minutesUsed instance variable has a getter, but no setter.
d. Add a method, makeCall that accepts the length (minutes) of a call. This method will simply increase minutesUsed by this amount. In other words, instead of having a setter for minutesUsed, we have a more intuitive method which will handle the update to minutesUsed.
e. Write code in main to test these new methods thoroughly.

[bookmark: _Toc176008532]Array Instance Variables & Indexed Getters & Setters
[bookmark: _Toc176008533]An Array Instance Variable
Sometimes it is useful to have an instance variable that is an array. For example, suppose we are representing a professional basketball team and want to store the number of points the team scored in each quarter as well as the name of the team. We could store the number of points for each quarter in an array as shown below (see example_basketball_array_instance_variable package in the code download):
public class BasketballTeam {

	private String name;
	private int[] points = new int[4];
	
	public BasketballTeam(String name, int pointsQ1, int pointsQ2,
 int pointsQ3, int pointsQ4) {
		this.name = name;
		points[0] = pointsQ1;
		points[1] = pointsQ2;
		points[2] = pointsQ3;
		points[3] = pointsQ4;
	}
}
[bookmark: _Toc176008534]Indexed Getter
If we want to provide a way to get the number of points for a particular quarter, then we need an indexed getter. For example:
public int getPoints(int quarter) {
	return points[quarter];
}

It would probably be useful to validate the parameter, quarter, before using it as the only permissible values are: 0,1,2,3. Thus, we could write the getter as:
public int getPoints(int quarter) {
	if((quarter < 0) || (quarter>=points.length)) {
		return -1;
	}
	return points[quarter];
}
The BasketballTeam class might also have methods that compute values from the points array. For example:
1. Add a method to the BasketballTeam class, totalPoints, which returns the total number of points scored in the game.
public int totalPoints() {
	int sum = 0;
	for(int i=0; i<points.length; i++) {
		sum += points[i];
	}
	return sum;
}

2. Add a method to the BasketballTeam class, numQuartersMoreThan that accepts an integer, numPoints, representing a number points. This method should return the number of quarters that the team score more than numPoints.
public int numQuartersMoreThan(int numPoints) {
	int sum = 0;
	for(int i=0; i<points.length; i++) {
		if(points[i] > numPoints) {
			sum++;
		}
	}
	return sum;
}
Finally, we could use this class with code as shown below:
BasketballTeam team = new BasketballTeam("Hawks", 18, 23, 31, 26);
int q3Points = team.getPoints(2);
int totPoints = team.totalPoints();
int numQMore20 = team.numQuartersMoreThan(20);
Finally, note: None of the instance variables nor methods are static. We will almost never use the static modifier in classes we write. However, main will always be static. We discuss the meaning of static a later section.

[bookmark: _Toc176008535]Indexed Setter
Consider the BasketballTeam class from a previous section where we had a points instance variable that was an array of integers representing the number of points the team scored in each of 4 quarters. If we want to provide a way to change the number of points for a particular quarter, then we need an indexed setter that accepts the quarter to change, and new number of points. For example (see example_basketball_array_instance_variable package in the code download):
public void setPoints(int quarter, int numPoints) {
	if((quarter < 0) || (quarter>=points.length)) {
		return;
	}
	points[quarter] = numPoints;
}
Finally, we could use this class with code as shown below:
BasketballTeam team = new BasketballTeam("Hawks", 18, 23, 31, 26);
team.setPoints(3,33); // Change 4th quarter points

[bookmark: _Toc176008536]The this Reference
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b4.jpg]The this keyword can be used inside a class to refer to itself (kind of like saying, “me” or “my” when speaking about yourself). For now, the only use of this that we consider is that it is a way to differentiate between an instance variable and a parameter with the same name. Frequently, we name the constructor parameters using the same name as the corresponding instance variables as shown on the right.
[bookmark: _Hlk46144390]Thus, this.balance refers to the instance variable while balance is a parameter, which means it is a local variable.
[bookmark: _Hlk46144577]A mistake is shown below. The code has no affect: it simply assigns balance to balance. The code does compile; however, it is incorrect as it does not initialize the instance variable. The parameter, balance is a local variable, thus, it hides the instance variable (unless we use this as shown above):
[bookmark: _Hlk46144523]public Account(double balance) {
	balance = balance;
}
[bookmark: _Toc176008537]Exercises
7. (Solution in exercise_piggy_bank package, PiggyBankVer4 class) Change the PiggyBank class from an earlier Exercise so that all the parameters in the constructor have exactly the same name as the corresponding instance variables.
8. (Solution in exercise_cellular_account package, CellularAccountVer4 class) Change the CellularAccount class from an earlier Exercise so that all the parameters in the constructor have exactly the same name as the corresponding instance variables.
[bookmark: _Toc176008538]The toString Method
Every class should have a toString method. The signature must be:
public String toString()
The toString method should return a string representation of the object. In other words, a descriptive string showing the values of the instance variables. If the class has methods that take no arguments and return a value, they should be executed, and the result displayed, in toString also. Displaying the result of the toString method is useful for debugging and testing. For example, for the Account class, the toString method is (see example_account/Account6.java and Account6Test in code download):
@Override
public String toString() {
	String msg = "owner=" + owner + ", bal=" + balance +
", num withdrawals=" + numWithdrawals;
	return msg;
}
Technically, we are overriding the toString method which we will discuss in a later chapter. The “@Override” is called an annotation. It is not required, but is a best practice.
You can explicitly call the toString method:
Account a = new Account(500.0, "Xavier");
a.deposit(1000.0);
a.withdraw(300.0);
System.out.println(a.toString()); // owner=Xavier, bal=1200.0, num withdrawals=1
However, you don’t have to explicitly call toString. If you simply “print the object”, Java implicitly calls the toString method. For example, these two lines are identical
System.out.println(a);
System.out.println(a.toString());
Sometimes it is useful to include the class name in the toString method so that when you are looking at output you know which class the message originated from. This might be particularly useful, for example if you had several different account classes: CheckingAccount, SavingsAccount, etc., each with a balance. For example:
@Override
public String toString() {
	return "CheckingAccount: balance=" + balance;
}
If you do not write your own toString method, there still is an inherited one (we discuss this in a later chapter). This inherited one returns a string that consists of:
ClassName@hexadecimalNumber
For example:
Account@15db9742
The only reason we mention this is that you are likely to come across this at some point when you print an object. Thus, when you do, you will immediately recognize that you forgot to write (override) the toString method.
[bookmark: _Toc176008539]Exercises
9. (Solution in exercise_piggy_bank package, PiggyBankVer5 class) Change the PiggyBank class from an earlier Exercise by adding a toString method that returns an informative message detailing how many of each coin are present and the total. For example, if this code is executed:

PiggyBank pBank = new PiggyBank(3,2,3);
int numQuarters = pBank.getNumQuarters() + 2;
pBank.setNumQuarters(numQuarters);
System.out.println(pBank);
The output should look similar to this:
Quarters=5, Dimes=2, Nickels=3, Total=$1.60
Note, the total may have a lot of decimals, e.g. 1.600000000001, or something like this. This is ok. We will learn to format out output later.
10. (Solution in exercise_cellular_account package, CellularAccountVer5 class) Change the CellularAccount class from an earlier Exercise by adding a toString method that returns an informative message similar to what is shown below.
Amount Due=$32.00, Used=600.0 min., Max=500.0 min., Cost Per Min=0.05

[bookmark: _Toc176008540]Testing a Class
	Account Class

	public class Account {

	private double balance;
	
	public Account(double initialBalance) {
		balance = initialBalance;
	}
	...

	public static void main(String[] args) {
		Account a1 = new Account(836.43);
		a1.deposit(163.57);
		System.out.println("Balance=$" +
 a1.getBalance());
		...
	}
}

When writing classes, we usually do informal testing, where we put a main in the class we are writing as shown in the example on the right. There, we just write simple code to illustrate how the class works, how to use the methods, etc.
However, all classes must be tested formally. For formal testing:
· We write a separate test class to test each class. The naming convention of this test class is: ClassNameTest. For example, if the class is Test, then the test class is AccountTest.
· Write at least one static test method for every method in the class, except those with no logic. In other words, we don’t test methods unless they do some computation, or have a condition (an if statement). Thus, many times getters and setters are not tested as the only thing they do is return a value, or set a value. Also, constructors are not usually tested for the same reason. However, as a beginner, I do find it useful for you to test constructors as mistakes can be caught quickly.
· The static test methods are called from main.
· Each test method has a name, prefaced by “test” and followed by a description of the test. For example, for the deposit method, we might have a test method, testDeposit_NegativeAmount where we test the deposit method by passing a negative value to it.
· Each test is stand-alone. This means that everything that is needed for the test is created in the test method itself.
· The tests display the expected output and the actual output.
· The test methods are usually ordered so that the simplest ones are earlier. For example, if you need to test method y, but in doing so, you need to use method x, the testX method should be executed before the testY method.
· Test each method under all relevant conditions. For example, the deposit method we have considered:
· It takes two different courses of action, depending on whether the amount being deposited is positive or negative. Thus, there would be two test methods for these two cases: testDeposit_PositiveAmount and testDepositNegativeAmount.
· Every time it is called, it increments the balance. Thus, we should test it after a single deposit. Then, we should have another test method to test the result when several successive deposits are made. Thus, we might have third test method: testDeposit_MultipleDeposits
A complete set of test cases for the most recent version of the Account class is shown below (see example_account/Account6Test.java in code download)
public class Account6Test {
	public static void main(String[] args) {
		testAccountCreation();
		testDeposit();
		testDeposit_NegativeAmount();
		testDeposit_Multiple();
		testWithdraw();
		testWithdraw_NegativeAmount();
		testWithdraw_Multiple();
		testDeposit_Withdraw();
	}
	
	private static void testAccountCreation() {
		System.out.println("-->testAccountCreation()");
		Account6 a1 = new Account6(1000.0, "Dalton");
		String expected = "Expected: owner=Dalton, bal=1000.0, num withdrawals=0";
		String actual = " Actual: " + a1.toString();
		System.out.println(expected);
		System.out.println(actual);
	}
	
	private static void testDeposit() {
		System.out.println("\n-->testDeposit()");
		Account6 a1 = new Account6(1000.0, "Leah");
		a1.deposit(500.0);
		System.out.println("balance should be $1500, balance=$" + a1.getBalance());
	}

	private static void testDeposit_NegativeAmount() {
		System.out.println("\n-->testDeposit_NegativeAmount()");
		Account6 a1 = new Account6(1000.0, "Leah");
		a1.deposit(-500.0);
		System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	}

	private static void testDeposit_Multiple() {
		System.out.println("\n-->testDeposit_Multiple()");
		Account6 a1 = new Account6(1000.0, "Avery");
		a1.deposit(500.0);
		a1.deposit(300.0);
		System.out.println("balance should be $1800, balance=$" + a1.getBalance());
	}

	private static void testWithdraw() {
		System.out.println("\n-->testWithdraw()");
		Account6 a1 = new Account6(1000.0, "Leah");
		a1.withdraw(500.0);
		System.out.println("balance should be $500, balance=$" + a1.getBalance());
		System.out.println("num withdrawals should be 1, numWithdrawals=" + a1.getNumWithdrawals());
	}

	private static void testWithdraw_NegativeAmount() {
		System.out.println("\n-->testDeposit_NegativeAmount()");
		Account6 a1 = new Account6(1000.0, "Leah");
		a1.withdraw(-500.0);
		System.out.println("balance should be $1000, balance=$" + a1.getBalance());
		System.out.println("num withdrawals should be 0, numWithdrawals=" + a1.getNumWithdrawals());
	}

	private static void testWithdraw_Multiple() {
		System.out.println("\n-->testWithdraw_Multiple()");
		Account6 a1 = new Account6(1000.0, "Avery");
		a1.withdraw(200.0);
		a1.withdraw(300.0);
		System.out.println("balance should be $500, balance=$" + a1.getBalance());
		System.out.println("num withdrawals should be 2, numWithdrawals=" + a1.getNumWithdrawals());
	}

	private static void testDeposit_Withdraw() {
		System.out.println("\n-->testDeposit_Withdraw()");
		Account6 a1 = new Account6(1000.0, "Zoe");
		a1.withdraw(500.0);
		a1.deposit(300.0);
		a1.deposit(400.0);
		System.out.println("balance should be $1200, balance=$" + a1.getBalance());
		System.out.println("num withdrawals should be 1, numWithdrawals=" + a1.getNumWithdrawals());
	}
}
Summary: so far, we have talked about writing a class and testing a class. We have not illustrated using a class to solve a problem. For example, a problem might be: write an app that allows a user to maintain and manipulate a bank account. So, the first step would be to write and test an Account class as we have done so far. After that, we would write an app that utilizes this class. For example, we might have a menu (or Gui) where a person can create an account by suppling their name and initial balance. Then, other options on the menu would be to enter an amount to deposit or withdraw, etc. We won’t consider writing apps until later when we consider Gui applications.
[bookmark: _Toc176008541]Exercises
11. (Solution in exercise_savings_account package) Write a class for the situation where we need to represent a savings account. A SavingsAccount:
· Has an owner (name) and a balance (hint: these are instance variables), which are supplied when the account is first created. (hint: this is referring to the constructor)
· The owner and balance should not be changed directly. Hint: define getters, but not setters
· A deposit method that accepts an amount of money, which must be positive. If it is positive, then it is added to the balance.
· A withdraw method that accepts an amount of money, which must be positive. If it is positive, then it is deducted from the balance. If the balance goes below 0.0, then a service fee of $20 is charged (reduces the balance by this amount). For example, if the balance is $100, and a withdrawal of $120 is made, then the balance becomes: $100-$120-$20 (service fee) = -$40.
· The total of all services fee should be available. Hint: (a) define a serviceFeeTotal instance variable and initialize it to 0.0, (b) define a getter for it, (c) Update the withdraw method to increase the serviceFeeTotal when appropriate.
· An applyInterest method accepts an interest rate as a decimal argument (e.g. 0.05 for 5%). This method increases the balance by this percent, provided the balance is greater than 0. For example, if the balance is $100 and applyInterest(0.05) is called, then the balance becomes: $100*(1+0.05) = $105.
· Write an SavingsAccountTest class to test all the methods.
12. (Solution in exercise_piggy_bank package, PiggyBankVer6 class) Change the PiggyBank class from an earlier Exercise by doing the following:
a. Remove all the setters and replace them with add methods: addQuarters(numQuarters:int), addDimes(numDimes:int), addNickels(numNickels:int). For example, the addQuarters method should just add the parameter to the instance variable. However, it should only do this if the parameter is positive; otherwise, it should do nothing. The other add methods are similar.
Note: the setters we added earlier were not a good design choice. We simply did it to get some practice writing setters. The reason it is a bad design choice is that we should write methods that mimic how we would use such an object in the real world. For example, two add 2 quarters to the bank, it is more intuitive to write a statement like this:
PiggyBank pBank = new PiggyBank(3,2,3);
pBank.addQuarters(2);
System.out.println(pBank);
b. Write a method, withdrawQuarters(numQuarters:int) that removes this number of quarters from the bank, if possible. For example:
PiggyBank pBank = new PiggyBank(7,2,3);
pBank.withdrawQuarters(5);
System.out.println(pBank);
Would produce this output:
Quarters=2, Dimes=1, Nickels=3, Total=$0.85
Another example:
PiggyBank pBank = new PiggyBank(7,2,3);
pBank.withdrawQuarters(8);
System.out.println(pBank);
Would produce this output:
Quarters=7, Dimes=1, Nickels=3, Total=$2.00
c. Write a PiggyBankTest class to test all the methods. Remember: (a) you don’t need to test the getters as there is no logic in the code, (b) you will have two test methods for each of the other methods.
13. (Solution in exercise_cellular_account package, CellularAccountVer6 class) Change the CellularAccount class from an earlier Exercise. Write a CellularAccountTest class, with test methods to thoroughly test all the methods.

[bookmark: _Toc176008542]Class & Object Diagrams
The Unified Modelling Language (UML) is a standardized graphical language for modelling object-oriented software. UML is composed of a number of different diagrams, one of which is the class diagram.
[image: G:\eDataClasses\CS 1302 - Programming 2\notes_new\02_ch9_Object&Classes\a2.jpg]A UML class diagram is used to model the classes in a system. An example is shown on the right. Note the following:
· A class diagram has three compartments: the top box shows the name of the class, the middle box shows the instance variables, and the bottom box shows the methods and constructors.
· The visibility is specified for each member where we use “-“ for private and “+” for public.
· The notation is a little bit different than Java. This is because UML for modelling object-oriented systems that can be developed in any object-oriented language. For example, the syntax for:

	Instance Variables:	varName : datatype
	Methods:	method(paramName : dataType) : returnType

[image:]We can show the test class in a class diagram. Note the following:
· Static methods are underlined
· We indicate a dependency relationship between the two classes which is depicted with a dashed line with an arrow pointing to the dependency. In this case, the AccountTester class depends on the Account class (because the test methods use the Account class).

An object diagram shows an example of objects (instances of a class) that might exist in a system when it is running. In other words, it shows what is in memory at some point during program execution. As we consider more complex designs, with relationships between classes, etc., these become more useful. The syntax for elements in an object diagram is show by way of example in the figures below.
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\c5.jpg]

[bookmark: _Toc176008543]Best Practices – Naming Conventions

1. Class names should be nouns, in mixed case with the first letter of each word capitalized (this is referred to as camel case), and almost always singular. Examples:
BankAccount, Employee, BasketballPlayer
Class names should be simple, but descriptive and use whole words, not acronyms or abbreviations (unless they are widely used like: SSN, URL, HTML, etc.)
2. Method names should be verbs or verb phrases and use camel case with the first letter of the first word in lowercase. They should not be too long, but long enough to make it clear the purpose of the method. Examples:

getBalance(), initializeGame(), calculateTax(), buildAccountReport()

3. Variable names should be short, but descriptive, and use camel case with the first letter of the first word in lowercase. Examples:

numWithdrawals, shotsAttempted, shotsMade	

4. A boolean variable should usually begin with “is”. For example:
boolean isPasswordValid, isInitialized, isGameOver;
Sometimes these prefixes are more suitable: “has”, “can”, “should”. For example:
	boolean hasMetRequirements, canTurnLeft, shouldAuthenticate;
5. Suppose you have a boolean instance variable:
private boolean isComplete;
then the naming convention for the corresponding getter and setter are:
public boolean isComplete() {
	return isComplete;
}
public void setComplete(boolean isComplete) {
	this.isComplete = isComplete;
}
6. Example – (Solution in example_basketball_player_fouls package) Model the number of fouls a basketball player has and if they are fouled out (5 fouls).
	BasketballPlayer Class
	BasketballPlayer Class (continued)

	public class BasketballPlayer {
	...
	private int numFouls=0;
	private boolean isFouledOut=false;
	
...

	public boolean isFouledOut() {
		return isFouledOut;
	}

public int getNumFouls() {
		return numFouls;
	}
	public void commitFoul() {
	if(!isFouledOut) {
		numFouls++;
		if(numFouls==5) {
			isFouledOut = true;
		}
	}
}
...
}

7. A boolean method (or expression) returns true or false. Thus, in an if statement you should not explicitly check to see if it is true (or false). For example:
	Best Practice
	
	Not Preferred

	if(isFouledOut))
	
	if(isFouledOut==true)

	if(!isFouledOut)
	
	if(isFouledOut==false)

[bookmark: _Toc176008544]Exercises
14. (Solution in exercise_piggy_bank package, PiggyBankVer7 class) Change the PiggyBank class from an earlier Exercise by doing the following:
a. Add an instance variable, isEmpty that is true if the total in the bank is 0.0 and false otherwise.
b. Add a getter for this instance variable (use best practice for naming the getter).
c. Add some test methods to PiggyBankTest to test this.
15. (Solution in exercise_cellular_account package, CellularAccountVer7 class) Change the CellularAccount class from an earlier Exercise by doing the following:
a. Add an instance variable, isNearMax that is true if the total minutes used is within 50 minutes of the maximum. Otherwise, it should return false.
b. Add a getter for this instance variable (use best practice for naming the getter).
c. Add some test methods to CellularAccountTest to test this.
[bookmark: _Toc176008545]Best Practices – Writing Classes
1. A domain (or custom) class is a class that models a real-world entity such as we have discussed so far, e.g. Employee, Account, Bank, etc. A domain class should never print anything. It is OK to put print statements in while you are debugging; however, they must be removed or commented out when debugging is complete.
Consider the bark method in the Dog class on the left below where it prints a message to the consule. This is not preferred. We prefer the bark method on the right that returns a string. This provides more flexibility as the calling code can then decide what to do with it, e.g. display it on the console (as shown in main below), display it in a Gui, store it in a file or database, send it as a message to some other entity, etc.
	Not preferred
	Preferred (Required!)

	public class Dog {
 private String name;
 public Dog(String name) {
 this.name = name;
 }
	
 public void bark() {
 System.out.println(name + " barks");
 }

 public static void main(String[] args) {
 Dog d = new Dog("Zoro");
 d.bark();
 }
}
	public class Dog {
 private String name;
 public Dog(String name) {
 this.name = name;
 }
	
 public String bark() {
 return name + " barks";
 }

 public static void main(String[] args){
 Dog d = new Dog("Zoro");
 System.out.println(d.bark());
 }
}

Test classes will, of course, have print statements.

2. Any code inside a block (an open/close pair of braces) should be consistently indented. Generally, Eclipse (or any IDE) will take care of this for you. See Curly brackets and indentation, and Formatting lines.
3. if, else, else if should always be followed by a set of braces, even if there is only one statement. For example:
	Not preferred
	Preferred

	if(weight < 100.0)
	numLight++;
else
	numHeavy++;

	if(weight < 100.0) {
	numLight++;
}
else {
	numHeavy++;
}

4. The members of a class should be ordered in a consistent fashion. The order below is somewhat standard:
public class MemberOrder {
	// Instance variables
	// Constructors
	// Getters & Setters (in pairs)
	// Methods (alphabetic)
	// toString
	// main
}
5. Consistent indenting and braces with conditionals and loops is required and would not be allowed into real-world production code if there are violations. Consider Google’s Java Style Guide. Many companies use a linter to analyze their code to check for violations of these and other style requirements.
[bookmark: _Toc176008546]The String.format Method
The code for the examples that follow are found in the example_string_format package.
The String class, which was covered in CS 1301, will be used often in homework and test problems. You should be familiar with these methods in the String and Character classes. If needed, Appendix 1 provides a review of these classes.
· Character Class – static methods: isDigit(char), isLetter(char), isLetterOrDigit(char), isLowerCase(char), isUpperCase(char), toLowerCase(char), toUpperCase(char)
· String Class – length, charAt(i), equals, substring(i,j), substring(i), indexOf(ch/str), indexOf(ch/str,i), lastIndexOf(ch/str), lastIndexOf(ch/str,i), toLowerCase(), toUpperCase()
In this section, we consider the String class’s static method, format, which you probably did not cover in CS 1301. It is a simple way to make output look nice. It can be tedious at first, but it is a must-have skill: you don’t want sloppy output in a system.
The syntax for the format method is:
String result = String.format(“format string” [, arg1, arg2, …]);
The format string is composed of string literals and format specifiers. Format specifiers define how to format the arguments. For example:
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d7.jpg]
Note:
· There is one format string (yellow highlight above).
· There is one argument for each format specifier. The order of the arguments matters. In other words, the first argument is substituted into the first format specifier, etc.
· The method returns a string with the arguments substituted for the format specifiers
· A “%” is used to signal the beginning of a format specifier.
· In the example above, there are 3 format specifiers:
1. “%s” – The corresponding argument is a string or character. No special formatting is done, the argument is simply substituted directly. Additional values can be used. For example: “%20s” makes the field width 20 characters, and the string is right justified by default. Similarly, “%-20s” would left justify.
2. “%d” – The corresponding argument is an integer (or byte, short, long). As with a string format specifier, justification and field with can be specified.
3. “%.2f” – The corresponding argument is a floating-point number, either float or double.
A line-break can be inserted by adding “\n”, or the newline format specifier, “%n”:
String result2 = String.format("weight=%,.2f%n", weight);
String result3 = String.format("weight=%,.2f\n", weight);
The format specifier for a floating-point number can also take a comma to indicate to use a comma as the thousand’s separator:
% , . decimals f
For example:
	Code
	Output

	double salary = 78224.8230842;
result = String.format("Salary=$%,.2f", salary);
	Salary=$78,224.82

Note that the “$” is not a part of the format specifier, it is a string literal.
The format specifier for a floating-point number can also take the width (number of columns) of the space to place the number:
% width . decimals f
As an example, the code below specifies a field width of 8 with 2 decimal places:
	Code
	Output

	double x = 498.57334;
result = String.format("%8.2f", x);
System.out.println(result);
	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\01_ch4_Strings\a3.jpg]

Notes:
· You can also use a “-“ flag in front of the width to left-justify
· If the specified field width is not wide enough, The JVM just expands it so that the whole number is displayed.
Note that the format string is a String. This means that we can build it programmatically. For example, we could write a method that accepts a number, and a number of decimals and returns the number, as a string, with that number of decimals:
public String formatNum(double num, int numDecimals) {
	String formatSpecifier = "%,." + numDecimals + "f";
	String formattedNum = String.format(formatSpecifier, num);
	return formattedNum;
}
Note that if there is an error in a format specifier, then a runtime error will result. For example, either of the two examples below result in a runtime error:
	“%.2z” is not a valid format specifier
	
	“%.2f” is not a valid format specifier for a string argument

	double x = 498.57334;
result = String.format("x=%.2z", x);
System.out.println(result);
	
	String val = "cat";
result = String.format("val=%.2f", val);
System.out.println(result);

Finally, a quick reference[footnoteRef:2] for String.format. [2: https://www.cs.colostate.edu/~cs160/.Summer16/resources/Java_printf_method_quick_reference.pdf]

[bookmark: _Toc176008547]Exercises
16. (Solution in exercise_piggy_bank package, PiggyBankVer8 class) Change the toString method in the PiggyBank class from an earlier Exercise so that it uses String.format to format the return string such that exactly 2 decimals are shown, and uses a “,” for the 1000’s separator. Write some informal test code in a main to test this method. Hint: you will need more than 4000 quarters to have a result more than $1000.
17. (Solution in exercise_build_report package) Write a static method, buildReport that accepts: an array of strings, names; an array of ints, ages; and an array of doubles, salaries. The size of each array is the same. The method should use String.format to build and return a string that shows each name, age, and salary on a single line in a format as shown below. Write some informal test code.
Name: Jed, age:22, salary: $48,339.23
Name: Keisha, age:33, salary: $68,992.92
Name: Jaylen, age:44, salary: $121,042.04
18. (Solution in exercise_cellular_account package, CellularAccountVer7 class) Change the toString method in the CellularAccount class from an earlier Exercise so that it uses String.format to format the return string such as shown below. In other words, “$” and 2 decimals for the amount due, one decimal for minutes used and max mainutes, and 2 decimals for the cost per minute.
Amount Due=$32.00, Used=600.0 min., Max=500.0 min., Cost Per Min=0.05

[bookmark: _Toc176008548]Helper Methods
Methods should be readable and as short as possible. If a method is long, it usually should be broken down into pieces of related functionality which are implemented by private helper methods. For example, suppose we have a method with two longish blocks of code, where each block logically performs some task:
public void longMethod() {
	// a few or more lines of code to do task A
	// a few or more lines of code to do task B
}
A better way to implement this method is to use helper methods:
	Long Method
	Helper Methods

	public void longMethod() {
	taskA();
	taskB();
}
	private void taskA() {
	// a few or more lines of code to do task A
}

private void taskB() {
	// a few or more lines of code to do task B
}

Helper methods generally have private visibility because we don’t necessarily want code outside the class to call them. And, in fact, there could be harm if an outside class, for example, called a helper method in the wrong situation, and/or didn’t call several of them in a particular sequence. As stated earlier, this is called defensive coding.
[image:]Example – Write a class, CreationDate that accepts a string in the format: mmddyyyy which represents a date. This class should have two methods which display the date in different formats. The getShortDate method should return a string formatted like this: mm/dd/yyyy. The getLongDate method should return a string formatted using a format like this: January 12, 2019. For example:
CreationDate cd1 = new CreationDate("04052019");
System.out.println(cd1.getShortDate()); // 04/05/2019
System.out.println(cd1.getLongDate()); // April 05, 2019
The solution is found in the example_creation_date package. In the solution below, the constructor uses a helper method, getMonthName to convert the string version of the month (e.g. “04”) to the corresponding name for the month (e.g. April):
public class CreationDate {
	private String shortDate;
	private String longDate;
	
	public CreationDate(String date) {
		String month = date.substring(0,2);
		String monthName = getMonthName(month); // Helper method
		String day = date.substring(2,4);
		String year = date.substring(4);
		this.shortDate = month + "/" + day + "/" + year;
		this.longDate = monthName + " " + day + ", " + year;
	}
	
	public String getShortDate() {
		return shortDate;
	}

	public String getLongDate() {
		return longDate;
	}
	
	private String getMonthName(String month) {
		String monthName = "";
		switch(month) {
		case "01":
			monthName = "January";
			break;
		case "02":
			monthName = "February";
			break;
		case "03":
			monthName = "March";
			break;
		...
		case "12":
			monthName = "December";
			break;
		}
		return monthName;
	}
}
[bookmark: _Toc176008549]Accessing Objects via Reference Variables
	Primitive Types

	Code
	Memory

	int x = 3;

	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p1.jpg]

	int y = x;

	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p1.jpg]

	y = 5;
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p2.jpg]

The code for the example in this section is found in the example_box package.
Objects and primitive data types are handled differently in memory and it is important to understand the difference. All variables have a type (data type). For example:
double x = 498.57334;
The type of the variable, x, is double, which is a primitive type. The primitive types are: byte, char, short, int, long, float, double, boolean. With primitive types, when we use the assignment operator (“=”), we make a physical copy of the value as shown in the figure on the right.
When the equality operator, “==” is applied to primitive type variables, it returns true if the two variables have the same value.
int x = 3;
int y = 4;
if(x==y) {
	System.out.println(x);
}
Next, let’s contrast how the assignment and equality operators work on objects. Consider the Box class shown in the class diagram on the left, below, and the object creation shown on the right.
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\a9.jpg] 	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\a10.jpg]
The type of an object is called a reference type and is always a class and the corresponding variable is called a reference variable. As stated earlier, the reference variable, b1, is not the actual object (although we frequently refer to it that way) but actually contains the memory address of where the actual object is located in memory. In other words, b1 is a reference (or pointer) to the actual object. The reference variable and the object are stored in different parts of memory.
To reinforce this point, consider the example shown below where we assign one reference variable to another, b2=b1. This does not create a copy of the object, it creates another reference to the same object.
	Code
	Memory
	Description

	Box b1 = new Box(4,6,2);
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b3.jpg]
	A new Box is created and assigned to the reference, b1.

	Box b2 = b1;
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b1.jpg]
	A new reference, b2 is assigned to b1. Thus, now there are two references to the same box. In other words, the assignment did not create a copy of the original box.

	b2.setLength(6);
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b2.jpg]
	Use the reference, b2 to change the length of the box.

	System.out.println(b1.getLength()); // 6
System.out.println(b2.getLength()); // 6
	Use the reference, b1 to a accessd the length of the box.

The equality operator, “==” works the same way with reference variables (objects) as it does with primitives, but with one subtle difference. It returns true if the two references have the same memory addresses, in other words, if they point to the same object in memory. For example, consider these two statements:
[image: G:\eDataClasses\CS 1302 - Programming 2\notes_new\02_ch9_Object&Classes\a3.jpg]Box b1 = new Box(4,6,2);
Box b2 = b1;
Then:
System.out.println(b1==b2); // true
[image: D:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b7.jpg]This, of course also means that if we have two physically different objects with exactly the same state, then they are not equal. Consider a new Box, b3 that has exactly the same state as b1, then b3 points to a different place in memory and b1 and b3 are not equal:
Box b3 = new Box(4,6,2);
System.out.println(b1==b3); // false

[bookmark: _The_null_Keyword][bookmark: _Toc176008550]The null Keyword
[image: cid:c3866244-c55f-4c62-8809-dd1f162386a5]A reference variable can be null. What does this mean? Let’s start with a non-software example by considering the image on the right[footnoteRef:3]. [3: https://cseducators.stackexchange.com/questions/6977/real-world-examples-for-the-difference-between-null-and-zero]

Many times, we declare and create an object in one line of code. For example:
Account account = new Account();
Of course, we can simply declare a reference to object without creating it:
Account account;

In this case, the reference variable, account has the special value, null. What this means is that it can hold a reference to an Account object, but currently it doesn’t. In Java, null is a keyword and can be checked for:
if(account==null) {
	System.out.println("Account object has not been created");
}
At a later time, you might create an object by invoking the constructor:
account = new Account();
Or, you might call a method to build and return an object for you:
account = buildAccount();
You can assign a reference variable to be null as shown below. This is effectively deleting the object. (Technically, the object is still in memory, but there is no reference variable pointing to it. Eventually, the garbage collector will reclaim the memory). There are situations where this is useful; however, I don’t think we will need to do this in this class.
account = null;
If you try to call a method on a reference variable that is null, your program will terminate when a NullPointerException is thrown. For example, this code:
Account account = new Account();
account = null;
account.deposit(100.0);
When run, will throw a NullPointerException, and the output will look like this:
Account object has not been created
Exception in thread "main" java.lang.NullPointerException
	at example_account.Account1.main(Account1.java:31)
Hopefully, this makes sense: you are trying to call a method (deposit), but there is no object, so the program must end. This example is simple, and obvious; however, you will have this happen sometimes in code you write, in less obvious ways than this example. When you get this error, you need to trace backwards in your code to see where it should have been created and add that code.
[bookmark: _Toc176008551]Using this With Multiple Constructors
[bookmark: _Hlk46145554]A class is not required to have an explicit constructor. If it doesn’t, the compiler inserts a no-arg constructor, with no code, into the class. Thus, these two classes are identical:
	Dog Class – Implicit Constructor
	Dog Class – Explicit Constructor

	public class Dog {

}
	public class Dog {
	public Dog() {}
}

Best practice is to always have at least one explicit constructor defined in a class. Frequently, we provide several constructors to provide flexibility to others who are using our classes.
[image:]For example, suppose we want to write a Person class that has a name and age and that a person can be created (constructors) in three ways, by supplying:
· A name and an age:
· A name only, in which case the age is set to 0:
· No arguments, in which case the name is set to ”Unknown”, and the age is set to 0.
Person p = new Person("Archie", 33);
Person p = new Person("Archie");
Person p = new Person();
The logical way to code these is shown below. This code is correct; however, the implementation is not a best practice.
	Person()
	Person(String name)
	Person(String name, int age)

	public Person() {
 this.name = "Unknown";
 this.age = 0;
}

	public Person(String name) {
 this.name = name;
 this.age = 0;
}

	public Person(String name, int age) {
 this.name = name;
 this.age = age;
}

Java provides a way for a constructor to call another constructor in the same class, with this syntax:
this(arg1, arg2, ...);
which must be the first line in the constructor and will call a constructor with the same signature. When you have multiple constructors, best practice is to try to write one “main” constructor, typically the one that accepts the most parameters (e.g. Person(name,age) above), and have the other constructors call this one. Best practice for this example is shown in the code below.
[image:]

Notes:
a. The statement: this(argList) calls the constructor with the matching argument list. Thus, you can’t have two constructors with the same signature.
b. this must be the first statement in the constructor, though it can be followed by additional code.
c. We call this constructor chaining.
d. It is not always possible, efficient, or understandable to use this technique, but frequently it is.

The solution for the preceding example is found in the example_person_multiple_constructors package
[bookmark: _Toc176008552]Exercises
19. (Solution in exercise_savings_account package, SavingsAccount2 class). Consider the SavingsAccount class from an earlier Practice Problem. Add the following constructors, using best practices: (a) accepts only a balance, in which case the name is, “Anonymous”; (b) accepts only an owner, in which case the balance is 0.0; (c) a no-arg constructor that sets the balance to 0.0 an owner to, “Anonymous”. Hint: all three of these constructors should use this.
20. (Solution in exercise_box package).Write a Box class that stores the length, width, and height of a box. A Box can be created three ways: (1) by supplying the length, width, and height; (s) a no-arg constructor, in which case all length, width, and height are all set to 1.0; (3) and if there is only one argument, the length, width, and height are all set to this value. Finally, a Box has a volume method that returns the volume of the box.
[bookmark: _Toc176008553]Passing Objects to Methods
We can pass an object (reference variable) to a method just as we would a primitive; however, it is useful to understand what is occurring in memory. Consider the Box class below which has a mergeBox method that accepts an instance of a Box. As you can see, this method increases the length, width, and height of this box by the corresponding values of the box, b, that is passed as an argument. The solution is in the example_box package, in the Box class.
public class Box {
	private double length, width, height;
	
	public Box(double l, double w, double h) {
		length = l; width = w; height = h;
	}
		
	public void mergeBox(Box b) {
		length += b.length; width += b.width; height += b.height;
	}
	...
}
And, we could use this method:
	Test Code
	
	Output

	Box b1 = new Box(2.0,3.0,4.0);
Box b2 = new Box(1.0,1.0,2.0);
b1.mergeBox(b2);
System.out.println(b1);

	
	length=3.0, width=4.0, height=6.0

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\a1.jpg]Although the example above was straight forward, it is important to note that all variables in Java are passed by value. This means that when you pass an argument to a method, the method receives a copy of the argument. In the case of a reference variable, a copy of the pointer to the object is passed. Consider the method below that accepts a Box and changes the length of the box.
public static void shrinkBox(Box b) {
	b.setLength(b.getLength()-1);
}
On the right, we show what occurs in memory when this method is executed. The calling method defines a box reference and when it is passed to the method, a local copy of the reference is made, b for use inside the method. As we saw earlier, both box and b reference the same Box object. Inside the method, we use the local reference to manipulate the box. When the method finishes and control returns to the calling program, the reference b is no longer available (it is garbage collected), and we continue to use the box reference.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\a2.jpg]Another example is shown below. This method creates a new box, but as we see below, it is short lived. When we return to the calling program, the original reference, box still refers to the original box. The new box created in the method is garbage collected when the method ends.

public static void changeBox(Box b) {
	b = new Box(9,9,9);
}
This example was simply to illustrate how reference variables work. If there were a situation where we want to create a new instance under some condition, we would simply need to return it.
Consider the changeBox method below. It accepts a Box and if its volume is less than 20, it creates a new box and returns it. Otherwise, the input box is returned, unchanged. We would use this method with code as shown on the right.
	changeBox Method
	Test Code

	public static Box changeBox(Box b) {
	if(b.getVolume()<20.0) {
		b = new Box(9,9,9);
	}
	return b;
}
	Box box = new Box(2,3,2);
box = changeBox(box);

 A good reference, scroll down to “Passing Primitive Data Type Arguments” and “Passing Reference Data Type Arguments”. Another reference, Pass-By-Value as a Parameter.

[bookmark: _Toc176008554]Exercises
21. (Solution in exercise_piggy_bank package, PiggyBankVer9 class) Modify the PiggyBank class from an earlier Exercise by adding a method, mergeBank that accepts another PiggyBank object. This method add the quarters, dimes, and nickels from the input bank to this bank. Write some formal test code to test this method.
22. (Solution in exercise_savings_account package, SavingsAccount3 class) Modify the SavingsAccount class from a previous Exercise by adding a method, mergeAccount that accepts another account. If the names (owners) are the same, then the balance of the input account is added to this account’s balance. Hint: make sure you detect if a service fee should be charged, and if isOverdrawn should be changed. This takes a bit of thought. Remember, the balance of the input account could be negative. But, a negative balance coming in, doesn’t necessarily make this account overdrawn. There is an easy way to do this by using the deposit and withdraw methods.
23. (Solution in exercise_basketball_player package) Consider the BasketBallPlayer class shown below. Add a method, hasMorePoints that accepts another BasketBallPlayer instance. This method should return true if this player has more points than the player that is passed in and false otherwise. Informal test code is commented out in main below.
public class BasketballPlayer {
	private int points;
	
	public BasketballPlayer(int points) {
		this.points = points;
	}

	public int getTotalPoints() {
		return points;
	}
	
	public static void main(String[] args) {
		BasketballPlayer p1 = new BasketballPlayer(10);
		BasketballPlayer p2 = new BasketballPlayer(12);
		BasketballPlayer p3 = new BasketballPlayer(20);
//		System.out.println(p1.hasMorePoints(p2));
//		System.out.println(p3.hasMorePoints(p2));
		
	}
}

[bookmark: _Toc176008555]Arrays of Objects
We can create an array of objects just as we would an array of any other type. Consider this “array of Boxes”:
Box[] boxes = new Box[3];
boxes[0] = new Box(4,4,4);
boxes[1] = new Box(9,9,9);
boxes[2] = new Box(6,6,6);
[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p6.jpg]Technically, this “array of Boxes” is really an array of references to Box objects. As shown on the right, boxes is a reference to an array that resides in memory. The array itself contains references to Box objects that reside elsewhere in memory.
Best Practice – Array variable names should be plural. For example:
Account[] accounts; Employee[] employees; Product[] products; double[] dailySales;
int[] testScores; String[] names;

21

[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p8.jpg]Next, as shown in the figure on the right, we consider the case where we have two references to the same array and we use one reference to change an element in the array. As we saw earlier (in a different context), both references reflect the change as (of course) they are both pointing to the same array. Thus, the last two lines produce the same output.

To conclude this section, we consider an example where we write methods that accept and do something with, array(s) of objects. Some will return an array of objects. There is an Exercise that is similar to this example. Typically, I work this on the board, so the solution is found in Appendix 2 (and also in the example_box_utilities package). The solution uses a for-each loop. An explanation of the for-each loop, and when to use it is found in Appendix 3. This example serves three purposes: (a) a review of manipulating arrays, (b) arrays of objects, (c) passing arrays to methods, and returning arrays from methods. Consider the Box class below.
public class Box {
	private double length, width, height;
	public Box(double l, double w, double h) { length = l; width = w; height = h; }
	public double getLength() { return length; }
	public double getWidth() { return width; }
	public double getHeight() { return height; }
	public double getVolume() { return length*width*height; }
	public void stretchLenth(double percent) { length = length*(1+percent); 	}
/*
 * Determines if b will fit inside this Box, e.g., if all dimensions of b
 * are less than those for this Box.
 */
	public boolean doesFit(Box b) {
		if((b.length<this.length) &&
				(b.width<this.width) &&
				(b.height<this.height)) {
			return true;
		}
		else {
			return false;
		}
	}
	@Override
	public String toString() {
		String msg = String.format("len=%.1f, wid=%.1f, ht=%.1f, vol=%.1f",
 length, width, height, getVolume());
		return msg;
	}
}
Note: A class as described below, BoxUtilities would have static methods instead of instance methods. However, we haven’t talked about static methods (other than for testing) and I don’t want to do that yet.
a. Draw a class diagram for a BoxUtilities class with the following members:
· [bookmark: _Hlk46149322]There are no instance variables.
· A no-arg constructor that does nothing, i.e. public BoxUtilities() {}
· A getAverageVolume method that accepts an array of Boxes and returns the average volume of all the boxes in the array. You can assume the array is full (i.e. all elements contain a Box, none are null).
· A stretchAll method that accepts an array of Boxes and a percent (specified as a decimal) and stretches the length of all the boxes in the array by the specified percent.
· A getBiggest method that accepts two arrays of Boxes. You can assume the two arrays are the same size. This method will return a new array with the biggest boxes, compared by volume, at the corresponding indices. For example:

Notation: (x,y,z) – a box with length=x, width=y, height=z, and volume=x*y*z

boxes1 = [(1,1,1), (7,7,7), (9,9,9)]
boxes2 = [(2,2,2), (5,5,5), (6,6,6)]

biggest = getBiggest(boxes1, boxes2) = [(2,2,2), (7,7,7), (9,9,9)]

· A whichOnesFit method that accepts two arrays of Boxes. You can assume the two arrays are the same size. This method will return a Boolean array that specifies whether the box in the second array fits in the corresponding box in the first array. For example:

boxes1 = [(1,1,1), (7,7,7), (9,9,9)]
boxes2 = [(2,2,2), (5,5,5), (6,6,10)]

biggest = whichOnesFit(boxes1, boxes2) = [false, true, false]
Hint: the Box class has a doesFit(Box b) method that returns true if the input box, b fits in this box.
b. Write the BoxUtilities class as described above.
c. Write a BoxUtilitiesTest class with static methods to test each method.
[bookmark: _Toc176008556]Exercises
The solution for this problem is found in the exercise_savings_account_utilities package.
24. Consider the SavingsAccount class from an earlier Exercise. You will write an SavingsAccountUtilities class with the following members:
· There are no instance variables.
· A no-arg constructor that does nothing.
· getTotalBalance – accepts an array of SavingsAccount objects and returns the sum of the balances over all accounts in the array.
· applyInterest – accepts an array of SavingsAccount objects and an interest rate and applies this interest rate to all the objects.
· getAccountsReport – accepts an array of SavingsAccount objects and returns a formatted string showing the name and balance of each account, one per line. The format should be like this:
Accounts Summary

Num accounts = 3
Total balance = $8,000.00

Accounts:
Owner=Tenesha, bal=$2,000.00
Owner=Niles, bal=$5,000.00
Owner=Xavier, bal=$1,000.00
· getAccountOwnersList – accepts an array of SavingsAccount objects and returns an array containing just the owner of each account.
· getSmallestAccounts – accepts two arrays of SavingsAccouns. You can assume the two arrays are the same size. This method will return an array of Account objects with smallest account, compared by balance, at the corresponding indices. For example (this just shows name and balance, you should have the Account object):

account1 = [(“Bo”,100.0), (“Ann”,500.0), (“Jen”,75.0)]
account2 = [(“Sam”,500.0), (“Pete”,200.0), (“Wren”,800.0)]

smallest = getSmallestAccounts(account1, account2) = [(“Bo”,100.0), (“Pete”,200), (“Wren”,75.0)]

a. Draw a class diagram for the SavingsAccountUtilities class.
b. Write the SavingsAccountUtilities class.
c. Write a SavingsAccountUtilitiesTest class with static methods to test each method.

[bookmark: _Toc176008557]Immutability
The examples in this section are found in the example_immutability package.
Sometimes it is useful to define a class that doesn’t allow the state of an object to be changed. In other words, the state is set when the object is created, but can never be changed after that. Such a class (object) is called immutable. It is probably hard to appreciate why this is useful, but it is a part of defensive design/coding. We can trust the values such an object contains, no one can change it. Obviously, not all classes can be immutable, but there are situations where it is useful.
As an example, the class below is immutable because the instance variables are private and there are no methods (setters or regular methods) that change any of the instance variables.
public class ImmutableBox {
	private double length, width, height;
	public double getLength() { return length; }
	public double getWidth() { return width; }
	public double getHeight() { return height; }

	public ImmutableBox(double l, double w, double h) {
		length = l; width = w; height = h;
	}

	public double volume() {
		return length*width*height;
	}
	@Override
	public String toString() {...}
	}
}
This Student class below is not immutable because the getScores method returns the array of scores, which is a reference variable. Thus, scores can be changed.
	Class that is not Immutable
	Illustration of Mutability

	public class Student {
	private String name;
	private int[] scores;

	public Student(String name, int[] scores) {
		this.name = name;
		this.scores = scores;
	}
	public String getName() {
		return name;
	}
	public int[] getScores() {
		return scores;
	}
}
	int[] scores = {93, 88, 85};
Student s = new Student("Larry", scores);
int[] scores2 = s.getScores();
scores2[0] = 100;

Thus, the requirements for a class to be immutable are:
· All instance variables must be private.
· There are no setters (or other methods) that change the values of instance variables.
· No methods can return a reference to an instance variable that is a mutable reference type.

The String class is immutable. This means that a String can never be changed. When you “change” a string a new String is created and assigned to the reference as shown in the figure below. There, we see that the original string no longer has any references to it, so it will be garbage collected.
	Code
	Memory

	String s = "dog";
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d1.jpg]

	s += " and cat";
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d2.jpg]

	Method

	public static void doesntChangeString(String str){
	str += " and cat";
}

This means that we need to be aware that a String, unlike many (mutable) objects cannot be changed in a method. Consider the method shown on the right. Then, consider what happens in memory as the code is executed:
	Code
	Memory

	String s = "dog";
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d1.jpg]

	doesntChangeString(s);
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d3.jpg]

	 // Inside doesntChangeString()
 str += " and cat";
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d5.jpg]

	// Back in main
	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d1.jpg]

To fix this error, we would simply return the modified string:
public static String changeString(String s) {
	s += " and cat";
	return s;
}

[bookmark: _Toc176008558]Data Encapsulation
In this section, we discuss encapsulation. We have discussed these ideas a little as this chapter progresses, but it is a good time to summarize and say a bit more.
First, the expression, to encapsulate means:
· express the essential features of something succinctly.
· enclose something in or as if in a capsule
When we define a class, we are encapsulating all the relevant features of an object into a class, a single unit. In a more specific way, we refer to data encapsulation as when we restrict access to the state of a class. Instead, we only provide methods which can change the values of the state. As stated earlier, data encapsulation is a best practice. To make the data in a class encapsulated, we make all instance variables private and provide getters and setters as shown in the table below (and illustrated earlier).
	Not Encapsulated
	Encapsulated

	public class Box {
public double length;
...
}
	
Box b = new Box(2,4,6);
b.length = 10;
	public class Box {
private double length;

public void setLength(double length) {
if(length > 0)
this.length = length;
}

public double getLength() {
return length;
}
...
}

Box b = new Box(2,4,6);
b.setLength(10);

You may say, “what’s the big deal? Why do I have to do all this extra work writing getters and setters?” The answer is that real systems are composed of many classes written by different teams and developers. Your classes may be used by other developers and vice versa. If your Box class is not encapsulated, you may know not to assign a negative value to the length, but others using your class may not know that. It is better to practice defensive programming, to take steps to make sure others use your classes correctly. One way to do this is to protect (encapsulate) the state of your classes. In addition to inadvertent misuse of a class, encapsulation also protects against deliberate misuse of a class. For example, you wouldn’t define a BankAccount class with a public balance instance variable because then clients could change the balance to any value they wanted. And, suppose you needed to log every transaction (change in balance) in a database. If you had a public balance instance variable, and a method to update the database, you would be requiring someone using your class to remember that both steps are necessary. Business rules, such as this, should be encapsulated by writing methods that carry them out. So, instead, you define the balance as private, and define a deposit method which updates the balance, and logs the amount of the deposit in a database and updates the private balance.
I use the following analogy to illustrate why data encapsulation is important. Consider the not-encapsulated You class:
public class You {
public double wallet;
}
By defining your wallet as public, when you checkout at the grocery, the cashier just reaches in your pocket and pulls your wallet out, and takes the required amount of money.
But that, of course is not the way things work. Your wallet is private! Now, the cashier says, “$10 please” (they are calling your payCashier method), and you reach into your wallet and pull out and hand them the required amount of money.
public class You {
private double wallet;

public double payCashier(double amount) {
	// take money out of wallet and hand to cashier
}
}
As a final note here, we introduce a term, read-only property, which we have discussed before, without using that name. When we want to allow clients to retrieve the value of a property, but not change it, then we supply a getter, but no setter. This is called a read-only property. When designing systems, we should defer to making properties read-only, unless there is an important reason for them to be changed through a setter. For example, a Student class would define a studentNumber property which would probably be read-only.
[bookmark: _Toc176008559]Packages & Accessibility (Visibility) of Classes & Members
[image: E:\Data-Classes\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\p3.jpg]A package is a way to group related classes. The UML package diagram shown on the right shows a package named warehouse_stuff which contains three classes: Box, PackingTape, and PackingPeanuts. A package not only provides a way to organize classes, it also provides protection as we will see below.
We declare a package with a package statement as the first line in a file. By convention, package names are all lower-case with an underscore separating words. For example:
	Box.java
	PackingTape.java
	PackingPeanuts.java

	package warehouse_stuff;

public class Box {
 ...
}
	package warehouse_stuff;

public class PackingTape {
 ...
}
	package warehouse_stuff;

public class PackingPeanuts {
 ...
}

[image: E:\Data-Classes\CS 1302 - Programming 2-Spring 17\notes\04_ch11_Inheritance\a13.jpg]All classes in a package must be inside a folder with the same name as that of the package. In the figure on the right, A.java is in the pack1 package, thus, it is in a pack1 folder on disk.

If you have a class, A, that wants to use a class, B, which is in another package, pack2, then it must be imported as shown in the code below.
	A.java
	B.java

	package pack1;
import pack2.B;

public class A {
	public static void main(...) {
		B b = new B();
		...
	}
}
	package pack2;

public class B {

	...
}

You can import all classes in a package with this statement: import pack.*; however, best practice is to only import the specific class(es) you need.
There are 2 visibility (accessibility) modifiers for classes as shown in the table below:
	UML
	Java
	Example
	Meaning

	+
	public
	public class Box { ... }
	The class is available in any package

	[blank]
	[blank]
	class Box { ... }
	The class is available only in containing package

The “[blank]” visibility is called default visibility or package-level visibility. There are 4 visibility modifiers for class members (methods and instance variables). In order of most to least visible, they are:
	UML
	Java
	Meaning

	+
	public
	Available in any class

	#
	protected
	[We learn about this in Ch 3]

	[blank]
	[blank]
	Available in any class in the same package. This is called default visibility.

	-
	private
	Available only in the class.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2013, backed up\notes\02_ch9_Object&Classes\pack.jpg]Classes and methods can access classes and methods in other packages if they are imported and if the accessibility allows it. For example, consider the packages and classes shown in the package diagram on the right and note the following:
· Class A can access class C because C is public. It can also access class B because it is in the same package.
· Class B can access classes A and C.
· Class C can access class A, but not B because class B has package-level accessibility.
· Methods in C can access the x method in A, but not the y method because it is private, and not z because it has package-level accessibility.
· Methods in B can access the x and z methods in A because they are in the same package.
· Methods in A can access any methods in B or C
We can also define subpackages. For example:
package pack1.subpack;
public class A {...}
In this case, class A would be defined in a subpack folder and the subpack folder would be inside the pack1 folder. For a class in another package to access class A, you need to import the package and subpackage. For example:
package another_package;
import pack1.subpack.A;
...
[bookmark: _Static_Variables_&]

[bookmark: _Toc176008560]Static & Final Variables & Methods
The examples in this section are found in the example_student_static package.
[bookmark: _Toc176008561]Static Variables - static
A static variable is shared by all instances of a class. It is not an instance variable, it is a class variable. An instance variable belongs to a specific object; a static (class) variable belongs to the class. There is only one copy of a static variable for the whole class. Any instance of the class can change the value of a static variable. A static variable must be initialized in its declaration or in a constructor.
Example 1 – This is a reasonable use of a static variable. Suppose we have a situation where we want every instance of a class to know how many instances of that class have been created. In the example below, we have a Student class that has a static variable, numStudents which is incremented each time an object is created. The test code shows that each time a new student is created, the numStudents increases. Note that this static variable is private, thus it is not available outside the class. A getter could be declared if access to numStudents was needed someplace other than inside a Student object; however, it would be better if it was a static method as we see shortly.
	Student Class
	Test Code

	public class Student {
private String name;
private static int numStudents;
	
public Student(String name) {
this.name = name;
numStudents++;
}

public String toString() {
return "name=" + name + ",
numStudents=" + numStudents;
}
}
	Student s1 = new Student("Maria");
System.out.println(s1); // name=Maria, numStudents=1
Student s2 = new Student("Zoe");
System.out.println(s2); // name=Zoe, numStudents=2
Student s3 = new Student("Deion");
System.out.println(s3); // name=Deion, numStudents=3

Example 2 – In the example above, if we make the static variable, public that it can be accessed from outside the class. To access a static member of a class, we use: ClassName.nameOfMember. For example, see the highlighted lines in the test code. This could also lead to misuse as shown in the last line of test code where the variable is set to an arbitrary value.
	Student Class
	Test Code

	public class Student {
private String name;
public static int numStudents;
	
public Student(String name) {
this.name = name;
numStudents++;
...
}
	Student s1 = new Student("Maria");
System.out.println(s1); // name=Maria, numStudents=1
Student s2 = new Student("Zoe");
System.out.println(s2); // name=Zoe, numStudents=2
Student s3 = new Student("Deion");
System.out.println(s3); // name=Deion, numStudents=3

System.out.println(Student.numStudents);
Student.numStudents = 782;

Example 3 – This is an inappropriate use of a static variable and one that I see in student work sometimes. The problem occurs when an instance variable is needed, but, incorrectly, it is declared static. However, subsequent code treats it as an instance variable. Consider a Student class with name and age properties where age is static and is initialized in the constructor.
	Student Class

	public class Student {
private String name;
private static int age;
	
public Student(String name, int initAge) {
this.name = name;
age = initAge;
}
	
public void setAge(int newAge) {
age = newAge;
}
...
}

Now, consider the sample code and the output below. First, we create a student and then display them:
Student s1 = new Student("Sly", 33);
System.out.println(s1); // name=Sly, age=33

Next, we create another student, with a different age. However, there is only one age, because age is a class variable and is shared by all instances of the class. So, when we print the two students, they both have the same age.
Student s2 = new Student("Wren", 44);
System.out.println(s1); // name=Sly, age=44
System.out.println(s2); // name=Wren, age=44

And of course, the same thing happens when we use setAge.
s2.setAge(77);
System.out.println(s1); // name=Sly, age=77
System.out.println(s2); // name=Wren, age=77
There is a use for static variables; however, you will never need a static variable in this class. Do not use them in this class.

[bookmark: _Toc176008562]Constants – final
A final variable is a variable whose value cannot change is commonly called a constant. A final variable can only be assigned a value one time. A final instance variable must be initialized in a constructor or in its declaration. In the example below on the left, a Student has a ssn which is final and initialized in the constructor. Alternately, as shown on the right below, ssn can be initialized in its declaration. Any other line of code that attempts to assign it a value will not compile. A final variable can also be defined as a local variable in a method.
	Initialize in Constructor
	Initialize in Declaration

	public class Student3 {
private final String ssn;
private String name;
private int age;
	
public Student3(String ssn,
 String name, int age) {
this.ssn = ssn;
this.name = name;
this.age = age;
}
...
	public class Student3a {
 private final String ssn = "222-31-9536";
 private String name;
 private int age;
	
 public Student3a(String name, int age) {
 this.name = name;
 this.age = age;
 }
...

A good question is why would you make an instance variable final? The effect of final is essentially the same as defining an immutable property. An immutable property is an instance variable (declared without final) and there are no methods that could change the value. For example, in the example above, if there is no method in the Student class that changes ssn then we can remove the final in its declaration. There are several reasons that final can be useful:
· If you want an immutable property in a class, marking it final makes this explicit. And, since instance variables generally appear at the top of the code file, it is quicker to learn that information. It increases readability.
· final variables are treated differently in the JVM and this leads to safer operations in threaded applications.
However, if a final field points to an object, the object itself can be changed, if it is mutable. For example, the Student class below has an age that can be changed with setAge. In main, a Student object is created and accessed by a final reference variable, s1. As shown, although we can’t change what object s1 points to, we can change the object itself.
	public class Student4 {
private String name;
private int age;
	
public Student4(String name, int age) {
this.name = name;
this.age = age;
}
	
public void setAge(int age) {
this.age = age;
}
...
	public static void main(String[] args) {
 final Student4 s1 = new Student4("Maria", 33);
 s1.setAge(77);
}

[bookmark: _Toc176008563]Class Constants – static final
A static final variable is called a class constant is a variable whose value cannot be changed and is shared by all instances of a class. Its value must be assigned in its declaration. A class constant would typically have a public visibility, or anything except private. For example, the Math class declares these class constants:
public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;
To access a static member of a class, we use: ClassName.nameOfMember. For example
Math.E or Math.PI
The naming convention for constants is to use all capital letters, with words separated by an underscore. For example:
public static final int MAX_INTERVAL = 30;
[bookmark: _Toc176008564]Static & Final Variable Summary
A summary of the attributes of static, final, and static final variables:
	Modifier
	static
	final
	static final

	Type of Variable
	Class
	Instance
	Class

	 Can Change Value
	Yes
	No
	No

	Can Assign Value in Declaration
	Yes
	Yes
	Must

	Can Assign Value in Constructor
	Yes
	Yes
	No

	Can Assign Value in a Method or Direct Access
	Yes
	No
	No

	Can be used as a Local Variable
	No
	Yes
	No

[bookmark: _Toc176008565]Static Methods
A static method is shared by all instances of a class; thus, it cannot depend on the values of instance variables for a particular object. For example, the String class defines the static method, valueOf that converts an integer (or double, boolean, etc) into a string. We use the class name to reference a static method. You can think of a static method as a utility method – it does something for you, but doesn’t depend on any object. An instance (regular) method depends on an object. As the example below shows, indexOf returns the location of ‘.’ in the string (object), num.
[image: E:\Data-Classes\CS 1302 - Programming 2-Spring 17\notes\02_ch9_Object&Classes\a6.jpg]
The Math class is a utility class. All the methods it defines are static and you cannot create an instance of the class. You can simply use its (static) methods to do various mathematical computations. For example:
double x = Math.abs(-4.23);
double y = Math.pow(4,2);
double z = Math.sqrt(45.76);
In this class, you will NEVER define static methods except in test classes. For example:
public class BoxTest {
	public static void main(String[] args) {
		boxTest1();
	}
	
	public static void boxTest1() {
		Box b = new Box(2,3,4);
		System.out.println(b.volume());
		...
	}
}
Finally, a method can be declared final which means it cannot be overridden. A class can be declared final which means that it cannot be subclassed. A method cannot be static final as static methods cannot be overridden. These will be considered in Chapter 3. A top-level class cannot be static; however, a nested class can be static. We do not consider these.
[bookmark: _Toc176008566]References
· https://www.baeldung.com/java-static
· https://www.geeksforgeeks.org/static-keyword-java/
· https://stackoverflow.com/questions/21155438/when-to-use-static-variables-methods-and-when-to-use-instance-variables-methods
· https://dzone.com/articles/final-keyword-and-jvm-memory-impact
· https://ocramius.github.io/blog/when-to-declare-classes-final/
[bookmark: _Toc176008567]Chapter Summary
This is a review of the concepts in Chapter 1. It should include some short code snippets for most topics, but for now, it doesn’t.
Sections 1-3
Classes model things (objects) – more on this in a minute. A class is a blueprint for making objects. We use classes to create objects. We program with objects.
Classes have state (instance variables, attributes, properties, fields) and behavior (methods, services, responsibilities). State is the data that defines what it means to be a particular type of object. Behavior is the methods that specify what you can do with an object.
Sections 4-5
A class should have a constructor which is used by client code to create objects. Constructors generally have parameters, one for each instance variable (but of course, there are many exceptions to this).
The members of a class are: instance variables, methods, constructors.
Sections 6-7
All instance variables should be private. private means that the variable is only accessible inside the class.
Almost all instance variables will have a getter. A getter simply returns the value of the instance variable. If you want to also provide a way to change the value of an instance variable, you would provide a setter, which accepts the new values and assigns it to the instance variable.
An instance variable that is an array is used so that the object has an “array” or properties of the same type. In this case, an indexed getter is used to return a particular value in the array. An indexed setter would accept the new values and the location in the array where the new value will be placed.
Sections 8-9
Use this to differentiate between an instance variable and a parameter or local variable. We typically use it in the constructor where we accept the initial value of the instance variable with a parameter name the same as the instance variable. We use this. in front of the instance variable to resolve the difference.
Every class should have a toString method that accepts no parameters and returns a string. It should return a string with the values of the instance variables along with labels to make the output meaningful.
Sections 10-13
Not on test 1: however, will be summarized here at some other time. Topics: testing, class diagrams, best practices
Sections 14-15
Use these String methods: length, charAt(i), equals, substring(i,j), substring(i), indexOf(ch/str).
Use String.format(“format string”, var1, var2, …) to return a formatted string. The format string is exactly what you want the return string to look like, except in place of the values of variables, you use format specifiers. Use: “%s”, “%d”, “%,.xf” for strings, ints, and doubles, respectively, where x is the number of decimal places.
Helper methods are a best practice. This says we should replace long methods with calls to helper methods that do a portion of the work the long method did.
Sections 16-17
A variable that points (refers) to an object is called a reference variable and its data type (a class) is called a reference type. A reference variable stores the memory address of the actual object in memory and is stored in a section of memory called the stack. The object it points to is stored in a section of memory called the heap.
When you copy a reference variable (via assignment), you create another reference to the same object in memory.
When you declare a reference variable, without creating an object, the reference variable has the special value, null. Also, null can assigned to a reference variable, explicitly removing an object from be referenced by the variable. We can also check to see if a reference variable is null. Calling a method on a reference variable that is null results in a null pointer exception.
Sections 18
If a class doesn’t explicitly define a constructor, the compiler automatically adds a no-arg constructor that does nothing (behind the scenes it creates the object in memory.
A class can have any number of constructors. Best practice is to try to write one “main” constructor, typically the one that accepts the most parameters, or does the most work, and have the other constructors call this one using the this keyword.
To call another constructor with this, it must be the first line of code in the constructor, and it is followed by an arguement list. Thus, it looks similar to a method call where the name of the method is this. At run-time, when such a constructor is called, the JVM calls the constructor with the matching parameter list, including number of parameter and data type.
Sections 19-20
Methods can define parameters that are objects. The examples we saw where a class, X, has a method that defines a parameter of the same type, X.
An array of object is actually a reference variable that points to an array object in memory, where each cell in the array refers to an object in another place in memory.
We can write methods that process an array(s) of objects.
Sections 21-24
Not on test 1: however, will be summarized here at some other time. Topics: immutability, encapsulation, packages & visibility, static variables, static methods
Appendix 1
This needs a summary of the string methods.
Appendix 3
A for-each loop is a way to iterate over an array without an index, that visits every element from beginning to end.
[bookmark: _Hlk71199949]Appendix
[bookmark: _Toc71200269][bookmark: _Toc71201106][bookmark: Appendix_1][bookmark: _Toc176008568]String & Characters
[bookmark: _Hlk44066189]This section is a review of the String and Character classes’ methods. String manipulation is a fundamental, essential programming skill. String manipulation will be required in most homework assignments and tests. Make sure you can use any of the methods below to solve problems.
Appendix 1.1 [bookmark: _Toc176008569]Characters
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\01_ch4_Strings\a1.jpg]Character is a class in the Java API which defines a number of useful static methods as shown in the class diagram on the right. It should be self-explanatory as to what the methods do. Example:
char code = 'a';
boolean isChar = Character.isLetter(code);
code = Character.toUpperCase(code);
Note: to invoke a static method, we use the class name: ClassName.staticMethod(arguments)
Comparing Characters – Since characters are represented internally as integers, we can compare characters with: =, !=, <, <=, >, >=. Note: upper-case letters occur before lower-case. From smallest to largest[footnoteRef:4]: (A,B,…,Z,…a,b,…z) For example: [4: https://www.rapidtables.com/code/text/ascii-table.html]

if(code=='b') {
	count++;
}
Appendix 1.2 [bookmark: _Toc176008570]Strings
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\01_ch4_Strings\b2.jpg]String is a class in the Java API. Some of the common methods are shown in the class diagram on the right. We will review some of them below. We usually create a String by assigning it to a string literal:
String s = "buffalo";
However, we can use the constructor:
String s = new String("buffalo");
We use an escape sequence to represent special characters. In Java (and many languages) this is a backslash followed by a character (or digits). Several useful escape sequences are:
	Escape Sequence
	Name

	\n
	New line

	\t
	Tab

	\\
	Backslash

	\”
	Double quote

For example:
	Code
	Output

	String msg = "The \"first\"\nThe second ";
System.out.println(msg);
	The "first"
The second

The table below shows some of the basic String methods. length and charAt are useful as they allow you to iterate over each character in a string.
	Method
	Description

	length():int
	Returns the length of the string, the number of characters.

	charAt(i:int):char
	Returns the character at index i in the string.

	trim():String
	Returns a string whose value is this string with any leading or trailing whitespace removed. Useful when reading data a user has supplied.

	toUpperCase():String
	Returns a string whose value is this string and with all the characters being converted to upper case.

	toLowerCase():String
	Returns a string whose value is this string and with all the characters being converted to lower case.

	concat(s:String):String
	Returns a string whose value is this string with s concatenated to the end. Usually we just use the “+” operator to concatenate strings. Both of these are equivalent:

String s1 = "anteater";
String s2 = "buffalo";

String s3 = s1 + s2;
String s4 = s1.concat(s2);

	public class Word {
 private String word;
	
 public Word(String word) {
 this.word = word;
 }
}	

Example – Suppose we have a Word class as shown on the right that stores a word string. Write a method, countUpperCase for this class that returns the number of upper-case letters in the instance variable, word.
Algorithm: loop through the characters in the word and ask each one if it is upper case.
Solution:
	public int countUpperCase() {
		int count = 0;
		for(int i=0; i<word.length(); i++) {
			if(Character.isUpperCase(word.charAt(i))) {
				count++;			
			}
		}
		return count;
	}

Appendix 1.3 [bookmark: _Toc176008571]String Comparison Methods
These are several comparison methods in the String class. We discuss them after this summary.
	Method
	Description

	equals(s:String):boolean
	Returns true if s has exactly the same contents as this string.	

	contains(s:String):boolean
	Returns true if s is in this string. Note: there is not an overload that accepts a character.

	compareTo(s:String):int
	Returns a negative integer if this string is lexicographically less than s, a positive integer if this string is greater than s, and 0 if they are the same.

To see if two strings have the same contents, use the equals method:
if(name1.equals(name2)) {
	System.out.println("Names the same");
}
Do NOT use “==” to compare the contents of two strings. Since strings are objects (reference types), when you use “==”, the JVM checks to see if the two String objects occupy the same location in memory, not if they have the same contents. For example:
s1 = "help";
s1 += "er";
s2 = "helper";

System.out.println(s1==s2); 	 // false
System.out.println(s1.equals(s2)); // true
The contains(s:String) method is used to see if the input string, s is contained in the string that is calling this method. For example, consider the Word class above. Add a method, containsDotCom that returns true if the word instance variable contains the string, “.com”, and false otherwise. The solution is shown below on the left. However, the contains method returns a Boolean (which is the answer), so we can write it as shown on the right.
	OK
	
	Preferred

	public boolean containsDotCom2() {
 if(word.contains(".com")) {
 return true;
 }
 return false;
}
	
	public boolean containsDotCom() {
 return word.contains(".com");
}

Example – Consider the Word class above. Add a method, countVowels that returns the number of vowels in word:
a. A fairly obvious algorithm is to loop over the characters in word and check to see if it is: a,e,i,o, or u.
public int countVowels2() {
	int count = 0;
	for(int i=0; i<word.length(); i++) {
		char c = word.charAt(i);
		if(c=='a' || c=='e' || c=='i' || c=='o' || c=='u') {
			count++;
		}
	}
	return count;
}
b. Another approach is to define a string that contains the vowels:
String vowels = "aeiou";
Then, loop over the characters and ask each one if it is contained in vowels:
public int countVowels() {
	String vowels = "aeiou";
	int count = 0;
	for(int i=0; i<word.length(); i++) {
		String c = word.charAt(i) + "";
		if(vowels.contains(c)) {
			count++;
		}
	}
	return count;
}
Note that the contains method accepts a String; there is no overloaded version that accepts a char. Thus, one way to turn the current character into a string is to concatenate an empty string onto the end of it as shown above. Another is:
String c2 = String.valueOf(word.charAt(i));
Characters are represented by Unicode values (integers). The lexicographic order of these are: 0, 1, 2, …, A, B, C, …, a, b, c. Thus, the upper-case characters occur before the lower-case characters.
a. The String class’s compareTo method is an important method. When you sort an array of strings, Java’s sort method uses the compareTo method. We don’t explicitly use it in code we write very often. However, it will come up later in the semester, so we will look at how it works for the String class as an aid to when we cover it more thoroughly later.

b. The compareTo(s:String) method starts at the beginning of this string and the input string, s, and compares them character by character. If the two strings are the exactly the same, it returns 0. If they are different, then the first pair of characters that are different are used to determine the return value. It returns a negative integer if this string occurs before the argument, s; and it returns a positive integer if this string occurs after s. For example.
String s1 = "ant";
String s2 = "fox";
String s3 = "alpaca";
String s4 = "ant";

System.out.println(s1.compareTo(s2)); // -5, ‘a’ is 5 characters before ‘f’
System.out.println(s2.compareTo(s1)); // 5, ‘f’ is 5 characters after ‘a’
System.out.println(s1.compareTo(s3)); // 2, ‘n’ is 2 characters after ‘l’
System.out.println(s1.compareTo(s4)); // 0, the strings are the same

c. As noted above, the upper-case characters occur before the lower-case letters. For example:
String s1 = "fox";
String s2 = "Fox";
System.out.println(s1.compareTo(s2)); // 26

Appendix 1.4 [bookmark: _Toc176008572]Substring Methods
The String class has methods for returning a substring:
	Method
	Description

	substring(beg:int):String
	Returns the substring in this string that beings at index beg and extends to the end of the string.

	substring(beg:int,end:int):String

	Returns the substring in this string that begins at index beg and extends to the character at index end-1. Thus, the length of the returned string will be end-beg.

For example:
String s1 = "anteater";
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d4.jpg]String s2 = s1.substring(3);	// "eater"

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d5.jpg]String s3 = s1.substring(3,6);	// "eat"

Appendix 1.5 [bookmark: _Toc176008573]Conversion of other Types to String
To convert a string which is an integer (double), use one of these below. If the string is not a number (or the wrong type) a run-time error will result.
String s1 = "48";
int x = Integer.parseInt(s1);

String s2 = "933.92";
double y = Double.parseDouble(s2);
Additionally, there are two other techniques to convert a number, character, or boolean to a string:
	Number to String
	Character to String
	Boolean to String

	double x = 43.42;
String s1 = String.valueOf(x);
// Or
String s2 = "" + x;
	char c = 'B';
String s3 = String.valueOf(c);
// Or
String s4 = "" + c;
	boolean isValid = true;
String s5 = String.valueOf(isValid);
// Or
String s6 = "" + isValid;

Appendix 1.6 [bookmark: _Toc176008574]String Location Methods
These methods in the String class return the location of an input character or string inside this string
	Method
	Description

	indexOf(c:char):int
indexOf(s:String):int
	Returns the index of the first occurrence of c (s) in this string or -1 if not found.

	indexOf(c:char,from:int):int
indexOf(s:String,from:int):int
	Returns the index of the first occurrence of c (s) in this string which occurs at or after the index from, or -1 if not found.

	lastIndexOf(c:char):int
lastIndexOf(s:String):int
	Returns the index of the last occurrence of c (s) in this string or -1 if not found.

	lastIndexOf(c:char,from:int):int
lastIndexOf(s:String,from:int):int
	Returns the index of the last occurrence of c (s) in this string searching backwards starting at from.

For example:
	Example
	Example Code

	String s1 = "anteater";

	a
	n
	t
	e
	a
	t
	e
	r

	0
	1
	2
	3
	4
	5
	6
	7

	int a = s1.indexOf('e');		// 3
int b = s1.indexOf("ate");		// 4
int c = s1.indexOf("bill");	// -1
int d = s1.indexOf("te", 3);	// 5
int e = s1.lastIndexOf("te");	// 5
int f = s1.lastIndexOf('a',3);	// 0

Example – Consider the Word class above. Add a method, addToWord in the Word class that accepts a string that may contain a comma. If it does, then it should remove the comma and add it to word; otherwise, it should simply add the argument to word. For example:
	Case 1: Contains Comma
	Case 2: Doesn’t Contain Comma

	Word w1 = new Word("Orange");
w1.addToWord("Peel,Now"); // "OrangePeelNow"
	Word w1 = new Word("Orange");
w1.addToWord("Peel"); // "OrangePeel"

The solution is shown below:
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\d6.jpg]public void addToWord(String str) {
int pos = str.indexOf(',');
if(pos != -1) {
String word1 = str.substring(0, pos);
String word2 = str.substring(pos+1);
word += word1 + word2;
}
else {
word += str;
}
}
Alternate Solution:
public void addToWord2(String str) {
	if(str.contains(",")) {
		int pos = str.indexOf(',');
		String word1 = str.substring(0, pos);
		String word2 = str.substring(pos+1);
		word += word1 + word2;
	}
	else {
		word += str;
	}
}
Example – Consider the Word class above. Add a method, getUniqueCharacters in the Word class that returns a string with exactly one instance of each character in word. For example, if word=“abbcKczza”, then the method returns “abcKz”.
	Solution
	Alternate Solution

	public String getUniqueCharacters() {
String result = "";
for(int i=0; i<word.length(); i++) {
String c = String.valueOf(word.charAt(i));
if(!result.contains(c)) {
result += c;		
}
}
return result;
}

	public String getUniqueCharacters2() {
String result = "";
for(int i=0; i<word.length(); i++) {
char c = word.charAt(i);
if(result.indexOf(c)==-1) {
result += c;				
}
}
return result;
}

[bookmark: _Toc71201107][bookmark: Appendix_2][bookmark: _Toc176008575]The BoxUtilities Class
a.
[image:]

b.
public class BoxUtilities {
	public BoxUtilities() {}
	public double getAverageVolume(Box[] boxes) {
		double sum = 0.0;
		for(Box b : boxes) { // see Appendix 4 for explanation of for-each loop
			sum += b.getVolume();
		}
		return sum/boxes.length;
	}
	
	public void stretchAll(Box[] boxes, double percent) {
		for(Box b : boxes) {
			b.stretchLenth(percent);
		}
	}
	
	public Box[] getBiggest(Box[] boxes1, Box[] boxes2) {
		Box[] biggest = new Box[boxes1.length];
		for(int i=0; i<boxes1.length; i++) {
			Box b1 = boxes1[i];
			Box b2 = boxes2[i];
			if(b1.getVolume()>b2.getVolume()) {
				biggest[i] = b1;
			}
			else {
				biggest[i] = b2;
			}
		}
		return biggest;
	}
	
	public boolean[] whichOnesFit(Box[] boxes1, Box[] boxes2) {
		boolean[] whichFit = new boolean[boxes1.length];
		for(int i=0; i<boxes1.length; i++) {
			Box b1 = boxes1[i];
			Box b2 = boxes2[i];
			whichFit[i] = b1.doesFit(b2);
		}
		return whichFit;
	}
}
Note, you could write the highlighted line above like this:
			if(b1.doesFit(b2)) {
				whichFit[i] = true;
			}
			else {
				whichFit[i] = false;
			}

c.
public class BoxUtilitiesTest {
	public static void main(String[] args) {
		testGetAverageVolume();
		testStretchAll();
		testGetBiggest();
		testWhichOnesFit();
	}
	
	private static void testGetAverageVolume() {
		System.out.println("Test getAverageVolume(boxes)");
		Box[] boxes1 = createBoxes1();
		BoxUtilities bu = new BoxUtilities();
	
		double avgVol = bu.getAverageVolume(boxes1);

		String msg = String.format("Avg vol=%.2f", avgVol);
		System.out.println(msg);
	}
	private static void testStretchAll() {
		System.out.println("\nTest stretchAll(boxes,0.1)");
		Box[] boxes1 = createBoxes1();
		BoxUtilities bu = new BoxUtilities();
	
		System.out.println("before stretch");
		for(Box b : boxes1) System.out.println(b);
		
		bu.stretchAll(boxes1, 0.1);
		
		System.out.println("after stretch");
		for(Box b : boxes1) System.out.println(b);
	}

	private static void testGetBiggest() {
		System.out.println("\nTest getBiggest(boxes1,boxes2)");
		Box[] boxes1 = createBoxes1();
		Box[] boxes2 = createBoxes2();
		BoxUtilities bu = new BoxUtilities();

		System.out.println("boxes1=");
		for(Box b : boxes1) System.out.println(b);
		System.out.println("boxes2=");
		for(Box b : boxes2) System.out.println(b);
	
		Box[] biggest = bu.getBiggest(boxes1, boxes2);
		
		System.out.println("biggest=");
		for(Box b : biggest) System.out.println(b);
	}

	private static void testWhichOnesFit() {
		System.out.println("\nTest whichOnesFit(boxes1,boxes2)");
		Box[] boxes1 = createBoxes1();
		Box[] boxes2 = createBoxes2();
		BoxUtilities bu = new BoxUtilities();

		System.out.println("boxes1=");
		for(Box b : boxes1) System.out.println(b);
		System.out.println("boxes2=");
		for(Box b : boxes2) System.out.println(b);
	
		boolean[] whichFit = bu.whichOnesFit(boxes1, boxes2);
		
		System.out.println("whichFit=");
		for(boolean b : whichFit) System.out.println(b);
	}

	private static Box[] createBoxes1() {
		Box[] boxes1 = new Box[3];
		boxes1[0] = new Box(4,4,4);
		boxes1[1] = new Box(9,9,9);
		boxes1[2] = new Box(6,6,6);
		return boxes1;
	}
	
	private static Box[] createBoxes2() {
	 Box[] boxes2 = new Box[3];
	 boxes2[0] = new Box(5,5,5);
	 boxes2[1] = new Box(10,8,8);
	 boxes2[2] = new Box(3,3,3);
	 return boxes2;
	}
}
[bookmark: _Toc71201108][bookmark: Appendix_3][bookmark: _Toc176008576]The Enhanced For Loop (aka The for-each Loop)
Consider this array:
// Initialize array
int[] vals = {7,3,5,2};
Of course, we can iterate over all the values with an indexed for loop as shown below:
// Indexed loop
for(int i=0; i<vals.length; i++) {
	int x = vals[i];
	System.out.println(x + " ");
}
When you want to iterate over all the values in an array, the for-each loop is simpler. Java calls this the enhanced for loop; however, most people refer to it as the for-each loop. As an example, the for-each loop below provides exactly the same output as the indexed loop above:
// For-each loop
for(int x : vals) {
	System.out.println(x + " ");
}
Some notes about the for-each loop:
a. We read the statement below, “for each integer x in vals”

for(int x : vals)

b. The first time through the loop, x is automatically the first value in the array. The second time through, x is the second value, etc. In other words, Java is picking the appropriate value from the array automatically, and returning it in the variable, x. The loop terminates after the last value in the array has been processed.

c. If you need to iterate over one array, from first to last, and you don’t need the index (see examples below), the for-each loop is preferred because it is simpler to read.
If we need the index of a particular element in the array, the for-each loop is not appropriate. For example, suppose you want to write a method to return the location (index) of the smallest element in an array.
private static int locationOfMinimum(int[] vals) {
	int min = vals[0];
	int locMin = 0;
	for(int i=1; i<vals.length; i++) {
		if(vals[i]<min) {
			min = vals[i];
			locMin = i;
		}
	}
	return locMin;
}
Note, we could have used a for-each loop, but it is a bit more cumbersome and usually we wouldn’t.
Several other examples of where an indexed loop is preferred:
a. If you need to access every other element in an array (or every third element, etc.), then an indexed loop is preferred.
int[] vals = {7,3,5,2};
for(int i=0; i<vals.length; i+=2) {
	System.out.println(vals[i] + " ");
}
b. If you need to iterate over the elements in a loop backwards.
int[] vals = {7,3,5,2};
for(int i=vals.length-1; i>=0; i--) {
	System.out.println(vals[i] + " ");
}
c. If you need to iterate over two arrays.
int[] xVals = {7,3,5,2};
int[] yVals = {1,4,2,6};
for(int i=0; i<xVals.length; i++) {
	int x = xVals[i];
	int y = yVals[i];
	System.out.println(x + " " + y + " ");
}

[bookmark: Appendix_4][bookmark: _Toc176008577]State Information for a Network Printer
Below are two pages of a test page generated from a network printer. This is the state information for the printer.
[image:]

[image:]
image3.jpeg
Account

[<— Class

balance

[<— State

deposit(amount)
withdraw(amount)

l<— Behaviors

image4.jpeg
Class
(data type) Object* Constructor

)

Account: new Account();

image5.jpeg
Class

Data

Behaviors

Rectangle BasketballPlayer Employee Product Car
length name name name fuelTankCapacity
width jerseyNumber payRate description fuelLevel
getArea() numPoints department weight milesPerGallon
getPerimeter() | | numFouls getPay(hours) price drive(distance, speed)
shoot() changePayRate(newRate) | | getCost(taxRate) fillUp(amount)
dribble() getShippingCost(destination)

defend()

image6.jpeg
Account

balance

Account(initBalance)
deposit(amount)
withdraw(amount)

image7.jpeg
public class Account3Test {

public static void main(String[] args) {
Account3 account = new Account3(1000.0);
account.deposit(200.0);
account.withdraw(400.90);
System.out.println("bal=" + account.balance);

} A [amenea;

B The field Account3.balance is not visible
Does not 2 quick fixes available:

} compile @ Change visibility of 'balance’ to ‘package’
@ Create getter and setter for ‘balance’...

Press 'F2' for focus|

image8.jpeg
Account

balance

Account(initBalance)
getBalance()
deposit(amount)
withdraw(amount)

image9.jpeg
In memory
Create Account object named al

Account al = new Account(836.43); sl ceolint

balance=836.43

Call method on al

al.deposit(163.57); al : Account

balance=1000.0

Call method on al
System.out.println("Balance=$" + al.getBalance());

Create Account object named a2
a2 : Account

Account a2 = new Account(200.0); balance=200.0

Call method on a2

a2.deposit(50.0); a2 : Account

balance=250.0

image10.jpeg
Account

balance
numWithdrawals
owner

Account(initBalance,name)
getBalance()
getNumWithdrawals()
getOwner()

setOwner()
deposit(amount)
withdraw(amount)

image11.jpeg
public class Account {

private double balance;

public Account(double balance) {

Instance Parameter
} variable

= balance;

image12.jpeg
Class Diagram

Parameter Data type

Account /

Class name

Private —
Public —

+- balance: double

> + Account(initBal : double)

+ deposit(amt : double)
+ getBalance() : double

Instance variables

Methods

Return type

image13.jpeg
v

_

Class Diagram

Dependency

|

AccountTest

E— = —>

+ main(args : string

- testAccountCreation

-testDeposit(

-testMultipleDeposits()
\

Account

- balance: double

|

Static method
(underlined)

+ Account(initBal : double)
+ deposit(amt : double)
+ getBalance() : double

image14.jpeg
Object Diagram

Object Class
name name Underlined

al Account / a2 : Account

balance=1000.0 balance=250.0

al : Account

account

Account

Omit instance variables
when the values are
not important

Object name only
when class is obvious

Class name only when
object name not
important

image15.jpeg
String name = "Waldo";
int age=23;
double weight

n

145.8230842;

String result = String.format(, hame, age, weight);

B ki Format specifiers

System.out.println(result); ——= name=Waldo, age=23, weight=145.82

image16.jpeg

image17.jpeg
CreationDate

-shortDate:String
-longDate:String

+CreateDate(date:String)
+getShortDate():String
+getLongDate():String
-getMonthName(month:String):String

image18.jpeg
x=3

y=3

image19.jpeg
x=3

y=5

image20.jpeg
Box

-length:double
-width:double
-height:double

Box(l:double,w:double,
h:double);
+getLength():double
+setlLength(l:double)
+getWidth():double
+getHeight():double

image21.jpeg
Reference Object
type (or instance)

l !

Box bl = new Box(4,6,2);

T

Reference
variable

image22.jpeg
height=2

image23.jpeg
height=2

image24.jpeg
height=2

image25.jpeg
b1 —»| :Box

length=4
b2 —» width=6

height=2

image26.jpeg
bl —>

b1:Box

length=4
width=6
height=2

b3 —>|

b3:Box

length=4
width=6
height=2

image27.png
Non-zero value

0

null undefined

image28.jpeg
Person

-name:String
-age:int

+Person(name:String,age:int)
+Person(name:String)
+Person()

+getName():String
+getAge():int
+toString():String

image29.jpeg
public class Person {
private String name;
private int age;

public Person() {

“this(...)" calls the this("Unknown", 0);
constructor with }

a matching

parameter list pubfllic Person(String name) {

this(name, 0);

}

“main” constructor ~ public Person(String name, int age) {
this.name = name;
this.age = age;

image30.jpeg
Box box = new Box(4,6,2); Memory 5
System.out.printin(box.getLength()); box —p{ 80X

length=4
shrinkBox(bom

public static void shrinkBox(Box b) { Memor

box —»{ :Box
b —| length=4
b.setLength(b.getLength()-1); Mahior
box —»{ :Box
} b —{length=3
System.out.printIn(box.getLength()); Memory
box —»| :Box

length=3

image31.jpeg
Memory

Box box = new Box(4,6,2);

System.out.printIn(box.getLength()); box > Box
length=4
changeBox(bﬁ
public static void changeBox(Boxb){ Memory
box —»{ :Box
b —| length=4
b = new Box(9,9,9); Memor
box —»{ :Box
) length=4
b —» :Box
length=9
System.out.printIn(box.getLength()); Memory
box —»| :Box
length=4

image32.jpeg
boxes

Box :Box :Box

length=4 | [length=9 | [Tength=6

image33.jpeg
Box[] boxes = new Box[3];

boxes[0] = new Box(4,4,4);
boxes[1] = new Box(9,9,9);
boxes[2] = new Box(6,6,6);

Box[] sameBoxes;
sameBoxes = boxes;

boxes[0].setLength(99);

Memory
boxes
:Box :Box
length=4 | [length=9 | [length=6
Memor
boxes —
sameBoxes
H :Box
ength4
Memory
boxes —pf
sameBoxes —p| \ i
:Box :Box
Iength 99| length=9 | [length=6

System.out.printin(boxes[0].getLength());
System.out.printin(sameBoxes[0].getLength());

image34.jpeg
3 >

'‘dog”

image35.jpeg
“dog”| Garbage collector removes
s —» “dog and cat”

image36.jpeg
str

image37.jpeg
str —»| “dog and cat”

stris a local variable, so it
dies when the method ends

image38.jpeg
warehouse_stuff

+Box
+PackingTape
+PackingPeanuts

image39.jpeg
4 8 packd

b [J] Ajava
4 B pack2

b [J] Bjava

image40.jpeg
pack1 pack2
+A +C
'+yxl§) +p()

image41.jpeg
double x = 14.3492; static method
String num = String.valueOf(x);

int pos = num.indexOf('.");

instance method

image42.jpeg
Character

+isDigit(c:char):boolean
+isLetter(c:char):boolean
+isLetterOrDigit(c:char):boolean
+isLowerCase(c:char):boolean
+isUpperCase(c:char):boolean
+toLowerCase(c:char):char
+toUpperCase(c:char):char

image43.jpeg
String

charAt(index:int):char
contains(s:String):boolean
equals(s:String):boolean
format(fmt:String,args:Objects...):String
indexOf(s:String):int
indexOf(s:String,from:int):int
lastindexOf(s:String):int
lastindexOf(s:String,from:int):int
length():int
substring(beg:int):String
substring(beg:int,end:int):String
toLowerCase():String
toUpperCase():String
trim():String

image44.jpeg
o~
oo
i
©|<
O
|~
cl=
©|e

image45.jpeg
<~
o|o
i
©|<
O
|~
cl=
©|e

image46.jpeg
0123 45 6 7 8

pos

image47.jpeg
BoxUtilities

+BoxUtilities()
+getAverageVolume(boxes:Box[]):double
+stretchAll(boxes:Box[],amt:double)
+getBiggest(boxes1:Box[],boxes2:Box[]):Box[]
+whichOnesFit(boxes1:Box[],boxes2:Box[]):boolean[]

image48.jpeg
Xerox” WorkCentre® 5955 Configuration Report

Multifunction Printer Printed on: Mar 03, 2024 at 01:05 PM
Protocols (cont.)

NTP: Enabled Services (cont.)
Primary Server: 10.130.5.28:123 Email;

Alternate Server: 0.0.0.0:123 Default From Address:

SLP: Disabled Default From Name:

SSDP: Disabled Confirmation Sheet: - 1

FTP: Passive Auto Send to Self:

Web Services on Device: Enabled E-mail Security:
WS-Dfscovery: Enabled Scan to Mailbox:
WS-Discovery Multicast: Enabled View Mailboxes by Default:
WS-Print: Enobled Storage Capacity (MB):
Ws-Scan: Enabled Storage Used (MB):

Web Sen.nces - Cleanup of Public Folders:
Extensible Service Registration: Enabled Cleanup of Created Folders:
Scan Template Management: Enabled Cleanup Time:
Xerox Secure Access: Enabled Scan to Home:
Session Data: Enabled Friendly Name:
Scan t?xtenS|orjs: Enabled Template Name:
Machine Configuration: Enabled A s
| uto Create Subdir:
Authen. & Author. Config: Enabled Append User Name to Path:
. Auto Create User Name Dir:
Serylcgs Scan To:
Printing Print From:

Banner Sheet: Disabled Saved Jobs for Reprint:

Sys/Start Job: Disabled Print From USB:

Error Sheets: Enabled Print From Mailbox:

Paper Substitution: Enabled

Tray Priority: 431,25 Accounting

Defailt Copigs: 1 Accounting Mode:

Default Job Type: Normal Print Network Accountx}wg'

Default Paper Size: x=8.50 inches, y=11.00 inches g

Default Paper Color: White .

Default 2 Sided Printing: 1 Sided Securlty ") i :

Default Output Tray: Top Tray Authentication Configuration

Default Output Color: Black & White Machine UI Authentication:

Default Collated Sets: Enabled Services Pathway:

Default Stapling: No Staple Job Status Pathway:

PostScript Installed Machine Status Pathway:
Level: 3 Web UI Authentication:
Version: 3020101 Authorization:

Image Quality: Toner Saver Retrieve E-mail from LDAP:

XPS (XML Paper Specification) Not Installed Authentication Server:
Level: XPS 1.0 Kerberos Primary Realm:
Version: XPS 1.0 Kerberos Primary Address:
Image Quality: Toner Saver Kerberos Alt 1 Realm:

PCL Kerberos Alt 1 Address:
Version: 6 SMB NT Domain:

Pitch Size: 10.00 SMB Alt 1 NT Domain:
Point Size: 12.00 NDS Default Tree:
Font Name: Courier NDS Default Context:
Lines Per Page: 60 NDS Alt 1 Tree:
Embedded Fax: not installed NDS Alt 1 Context:
Fax Line1: Smartcard Ctrl Server:
Fax Line2: Smartcard Ctrl Domain:
Internet Fax: Not Displayed SmartCard OCSP URL:

Delivery Confirm Timeout: 10800 seconds Xerox Secure Access:

Confirmation Sheet: Errors Only Secure Access Server:

Activity Report: Enabled Secure Access Path:

Accept Email with no Attach: Enabled Audit Log:

Server Fax: Not Displayed IP Sec:

Confirmation Sheet: Ersors Only IP Filtering:

Delay Start: Disabled 802.1x:

Repository Protocol: FTP Authentication Method:

Repository Server: 0.0.0.00 Imqge Overwrite

Repository Document Path: Immediate:

Workflow Scanning: Not Displayed Scheduled:

Confirmation Sheet: Errors Only Scheduled Frequency:

Default Repository Protocol: FTP Encryption

Default Repository Server: 0.0.0.0:0 FIPS 140-2:

Default Repository Path: User Data Encryption:

Default Repository Login Credentials: System Secure Connection:

Alt1 Repository Protocol: FTP McAfee Embedded Control:

Alt1 Repository Server: 0.0.0.0:0

Alt1 Repository Document Path: Media Trqys

Alt1 Repository Login Credentials: System Tray 1:

Template Pool Protocol: BTP: Tray 2:

Template Pool Server: 0.0.0.0:0 Tray 3:

Template Pool Path: Tray 4

Tray 5 (Bypass):

©2015 Xerox Corporation. All Rights Reserved.
Xerox® and XEROX and Design® are trademarks of Xerox Corporation in the United States and/or other countries.

Xerox .)

Displayed
Xerox_BW@valdosta.edu

Errors Only
Disabled
Disabled
Disabled
Enabled
28161.48 MB
1602.60 MB
Enabled
Enabled
Daily
Disabled

Disabled
Disabled
Disabled
Not Displayed
Not Displayed
Disabled
Disabled
Disabled

Network Accounting:
Enabled

Locked

Locked

Locked

Locally on the Device
Locally on the Device
Enabled

Disabled

0.0.0.0:88

0.0.0.0:88

0.0.0.0:443

Enabled
10.130.10.37:443

PharosXeroxiMFP/Authentication/ConvAut...

Enabled
Disabled
Disabled
Disabled
EAP-MDS

installed/disabled
Disabled
Monthly

Disabled
installed/enabled
TLS

Enhanced Security

Plain, White and Letter (8.5 x 11%)
Plain, White and Letter (8.5 x 11%)
Plain, White and Letter (8.5x 11%)
Plain, White and Letter (8.5x 11")

Lightweight Cardstock, White and Letter (8...

NetWare is a trademark of Novell, Inc. McAfee is a trademark of McAfee, Inc. AppleTalk is a trademark of Apple Computer, Inc. AirPrint is a trademark of Apple Inc.

Monria is a trademark of the Manria Allinnce

®

image49.jpeg
Xerox® WorkCentre® 5955

Multifunction Printer
Protocols (cont.)

NTP:

Primary Server:
Alternate Server:

SEP:

SSDP:

FTP:

Web Services on Device:
WS-Discovery:
WS-Discovery Multicast:
WS-Print:

WS-Scan:

Web Services
Extensible Service Registration:
Scan Template Management:
Xerox Secure Access:
Session Data:
Scan Extensions:
Machine Configuration:
Authen. & Author. Config:

Services
Printing
Banner Sheet:
Sys/Start Job:
Error Sheets:
Paper Substitution:
Tray Priority:
Default Copies:
Default Job Type:
Default Paper Size:
Default Paper Color:
Default 2 Sided Printing:
Default Output Tray:
Default Output Color:
Default Collated Sets:
Default Stapling:
PostScript
Level:
Version:
Image Quality:
XPS (XML Paper Specification)
Level:
Version:
Image Quality:
PCL
Version:
Pitch Size:
Point Size:
Font Name:
Lines Per Page:
Embedded Fax:
Fax Line1:
Fax Line2:
Internet Fax:
Delivery Confirm Timeout:
Confirmation Sheet:
Activity Report:
Accept Email with no Attach:
Server Fax:
Confirmation Sheet:
Delay Start:
Repository Protocol:
Repository Server:
Repository Document Path:
Workflow Scanning:
Confirmation Sheet:
Default Repository Protocol:
Default Repository Server:
Default Repository Path:

Default Repository Login Credentials:

Alt1 Repository Protocol:

Alt1 Repository Server:

Alt1 Repository Document Path:
Alt1 Repository Login Credentials:
Template Pool Protocol:
Template Pool Server:

Template Pool Path:

Enabled
10.130.5.28:123
0.0.0.0:123
Disabled
Disabled
Passive
Enabled
Enabled
Enabled
Enabled
Enabled

Enabled
Enabled
Enabled
Enabled
Enabled
Enabled
Enabled

Disabled
Disabled
Enabled
Enabled
43125

1

Normal Print
x=8.50 inches, y=11.00 inches
White

1 Sided

Top Tray
Black & White
Enabled

No Staple
Installed

3

3020.101
Toner Saver
Not Installed
XPS 1.0
XPS1.0
Toner Saver

6

10.00

12.00
Courier

60

not installed

Not Displayed
10800 seconds
Errors Only
Enabled
Enabled

Not Displayed
Errors Only
Disabled

FTP

0.0.000

Not Displayed
Errors Only
FTP

0.0.0.0:0

System
FTP
0.0.0.00

System
FTP
0.0.0.0:0

©2015 Xerox Corporation. All Rights Reserved.
Xerox® and XEROX and Design® are trademarks of Xerox Corporation in the United States and/or other countries.
NetWare is a trademark of Novell, Inc. McAfee is a trademark of McAfee, Inc. AppleTalk is a trademark of Apple Computer, Inc. AirPrint is a trademark of Apple Inc.
Mopria is a trademark of the Mopria Alliance.

Configuration Report
Printed on: Mar 03, 2024 at 01:05 PM

Services (cont.)

Email:
Default From Address:
Default From Name:
Confirmation Sheet:
Auto Send to Self:
E-mail Security:

Scan to Mailbox:
View Mailboxes by Default:
Storage Capacity (MB):
Storage Used (MB):
Cleanup of Public Folders:
Cleanup of Created Folders:
Cleanup Time:

Scan to Home:
Friendly Name:
Template Name:
Auto Create Subdir:
Append User Name to Path:
Auto Create User Name Dir:

Scan To:

Print From:
Saved Jobs for Reprint:
Print From USB:
Print From Mailbox:

Accounting

Accounting Mode:
Network Accounting:

Security

Authentication Configuration
Machine UI Authentication:
Services Pathway:
Job Status Pathway:
Machine Status Pathway:
Web UT Authentication:
Authorization:
Retrieve E-mail from LDAP:
Authentication Server:
Kerberos Primary Realm:
Kerberos Primary Address:
Kerberos Alt 1 Realm:
Kerberos Alt 1 Address:
SMB NT Domain:
SMB Alt 1 NT Domain:
NDS Default Tree:
NDS Default Context:
NDS Alt 1 Tree:
NDS Alt 1 Context:
Smartcard Ctrl Server:
Smartcard Ctrl Domain:
SmartCard OCSP URL:
Xerox Secure Access:
Secure Access Server:
Secure Access Path:
Audit Log:
IP Sec:
IP Filtering:
802.1x:
Authentication Method:
Image Overwrite
Immediate:
Scheduled:
Scheduled Frequency:
Encryption
FIPS 140-2:
User Data Encryption:
Secure Connection:

McAfee Embedded Control:

Media Trays
Tray 1:
Tray 2:
Tray 3:
Tray 4:
Tray 5 (Bypass):

Xerox

Displayed
Xerox_BW®@valdosta.edu

Errors Only
Disabled
Disabled
Disabled
Enabled
28161.48 MB
1602.60 MB
Enabled
Enabled
Daily
Disabled

Disabled
Disabled
Disabled
Not Displayed
Not Displayed
Disabled
Disabled
Disabled

Network Accounting:
Enabled

Locked

Locked

Locked

Locally on the Device
Locally on the Device
Enabled

Disabled

0.0.0.0:88

0.0.0.0:88

0.0.0.0:443

Enabled
10.130.10.37:443

PharosXeroxiMFP/Authentication/ConvAut...

Enabled
Disabled
Disabled
Disabled
EAP-MD5

installed/disabled
Disabled
Monthly

Disabled
installed/enabled
TLS

Enhanced Security

Plain, White and Letter (8.5x 117)
Plain, White and Letter (8.5 x 11%)
Plain, White and Letter (8.5 x 11")
Plain, White and Letter (8.5x11")

Lightweight Cardstock, White and Letter (8...

P

®

m ®
4{)

image1.jpeg
Class Constructor
(data type) Object* invocation Argument

Scanner scanner = new Scanner(System.in);

double salary = scanner.nextDouble();

scanner.close(); <
Method call

image2.jpeg
Account <—1—Class

accountNum
owner
balance

<—— State

listOfDeposits
listOfCharges
status

getAccountNum()
getOwner()
getBalance()
deposit(amount)
withdraw(amount)
applylnterest(rate)
applyServiceCharges()
genateMonthlyStatement()

— Behaviors

