	CS 1302 – Sample Test 5
	Name:
	KEY

	No electronics, notes, smart watches, etc. allowed.
	
	Print: FirstName LastName

1. (55 points) Write the entire Game class (see the handout provided)
public class Game {
	Map<Integer,Player> players = new HashMap<>();
	
	public boolean addPlayer(Player p) {
		int id = p.getId();
		if(players.containsKey(id)) {
			return false;
		}
		players.put(id,p);
		return true;
	}
	
	// Not asked for
	public int getNumPlayers() {
		return players.size();
	}
	
	public Player getPlayer(int id) {
		if(players.containsKey(id)) {
			return players.get(id);
		}
		return null;
	}
	
	public Player removePlayer(int id) {
		// Since assume player exists, no check for key
		return players.remove(id);
	}
	
	public Player lowestLevelPlayer() {
		Player lowLevelPlayer = null;
		double lowLevel = Double.MAX_VALUE;
		for(Player p : players.values()) {
			double level = p.getLevel();
			if(level < lowLevel) {
				lowLevel = level;
				lowLevelPlayer = p;
			}
		}
		return lowLevelPlayer;
		
	}
	public ArrayList<Player> playersBelowList(double levelThreshold) {
		ArrayList<Player> playersBelow = new ArrayList<>();
		for(Player p : players.values()) {
			double level = p.getLevel();
			if(level < levelThreshold) {
				playersBelow.add(p);
			}
		}
		return playersBelow;
	}

	public Map<Integer, Player> playersBelowMap(double levelThreshold) {
		Map<Integer, Player> playersBelow = new HashMap<>();
		for(Player p : players.values()) {
			double level = p.getLevel();
			if(level < levelThreshold) {
				playersBelow.put(p.getId(),p);
			}
		}
		return playersBelow;
	}

[bookmark: _GoBack]	public List<Integer> idsBetween(int from, int to) {
		List<Integer> ids = new ArrayList<>();
		for(int id : players.keySet()) {
			if(id>=from && id<=to) {
				ids.add(id);
			}
		}
		return ids;
	}
	
	// Not asked for
	@Override
	public String toString() {
		String msg = "Players:\n";
		for(Player p : players.values()) {
			msg += p + "\n";
		}
		return msg;
	}
}

2. (10 points) Pick a problem from: (a) Ch 9, Sec 2.1, Exercises 1-4. (b) Ch 9, Sec 7.1, Exercises 5, 6, 9
Solution: See code download for Ch 9.
3. (10 points) Pick another problem from: (a) Ch 9, Sec 2.1, Exercises 1-4. (b) Ch 9, Sec 7.1, Exercises 5, 6, 9
There will be 2 or 3 recursion problems chosen from different types:
Solution: See code download for Ch 10.
4. (10 points) Pick a problem from: (a) Ch 10, examples in Sections 4.1-4.5, (b) Ch 10, Sec 4.6, Exercises 3-5.
5. (10 points) Pick a problem from Ch 10, examples in Sections 5.2-5.3
6. (10 points) Pick a problem from: (a) Ch 10, examples in Sections 6.1-6.3, or (b) Ch 10, Sec 6.4, Exercise 11
7. (10 points) Pick a problem from: (a) Ch 10, examples in Sections 7.1-7.3, or (b) Ch 10, Sec 7.4, Exercises 12-13
8. (10 points total) Given the skeleton of a binary search method and recursive helper method, that searches for an integer in an array (or ArrayList) of integers, fill in the blanks of the missing code. The best way to study for this is to be able to write the code for the example in Ch 10, Sec 8.5.
Solution: See Ch 10, Sec 8.5
9. (10 points total) Given the skeleton of a binary search method and recursive helper method, that searches for an Employee in an array (or ArrayList) of Employee objects, given that the Employee class implements the Comparable interface, fill in the blanks of the missing code. The best way to study for this is to study the changes we made to example in Ch 10, Sec 8.5, when I presented a similar problem in class. Hint: the main thing you need to change is: key < vals[mid] and key > vals[mid].
Solution: Class Notes for April 4, 2024

2

