CS 1302 – Test 4 Expectations

[bookmark: _GoBack]Information about the test
General
· Test 4 covers Ch 6, 7, & 8
· You can begin the test approximately 10 minutes before the official beginning of class. When you enter the room, leave everything (all books, phones, smart watches, etc) at the front of the room.
· It will be mostly writing classes, methods, and snippets.
Ch 6 Expectations
1.
a. Given the description of a class, write a method or constructor that throws a RuntimeException under certain circumstances.
b. Given a class with a method or constructor that might throw an exception, create an instance of the class, printing any exception that might be thrown. Hint: you should also make sure that the object that is created in the process is available after the try/catch block.
· See: (a) Section 6, and (b) Section 6.1, Exercise 1
2. Know the rule for determining if a thrown exception is caught by a particular catch block.
· See: (a) Section 4, (b) Section 4.1, Exercises 1-2.
3. Trace code that utilizes try/catch/finally.
· See: (a) Section 2, (b) Section 7
Ch 7 Expectations
4. Given the description of classes involved in a one-to-many relationship, and the description of a text file that whose contents correspond to various objects of these classes, write code that reads such a text file and builds a one-to-many object model in memory.
· See: (a) Section 7.1, (b) Section 7.3, (c) Section 7.4, Exercise 2, (d) HW 6 except without dealing with invalid data.
5. Write code that splits a string on a delimiter(s).
· See: Section 7
Ch 8 Expectations
6. Know how to create and use: ArrayList, HashSet and TreeSet
· See: (a) Section 2, (b) Section 2.1, Exercises 1-4, (c) Sections 6-7, (d) Section 7.1, Exercises 8-10, (e) Section 9.1, Exercises 11-14, (f) Section 10
7. Write code to utilize an Iterator to filter a collection by removing items that meet some condition(s), and possibly returning those removed items in a list.
· See: (a) Section 3.1-3.3, (b) Section 3.4, Exercise 1
8. Write a Comparator and use it to sort a collection or create a TreeSet.
· See: (a) Section 5, (b) Section 5.1, Exercise 6
Miscellaneous
You will be provided a handout with this class diagram (next page):

[image:]

1

image1.jpeg
<<Interface>>

Collection<E>

add(e:E):bool
addAll(c:Collection<? extends E>):bool
clear():void
contains(o:Object):bool
containsAll(c:Collection<?>):bool
equals(o:Object):bool
isEmpty():bool

iterator():Iterator
remove(o:0bject):bool
removeAll(c:Collection<?>):bool
retainAll(c:Collection<?>):bool
size():int

<<Interface>>
Iterator<E>

hasNext():bool
next():E
remove():void

<<Interface>>

List<E>

add(indx:int, e:E):bool
get(indx:int):E
indexOf(o:Object):int
lastindexOf(o:Object):int
remove(indx:int):bool
set(index:int, E e):E

HashSet<E>

HashSet()

HashSet(c:Collection<? extends E>)

———eed ArrayList<E>

LinkedHashSet<E>

ArrayList()

trimToSize()

ArrayList(c:Collection<? extends E>)

LinkedHashSet()
LinkedHashSet(
c:Collection<? extends E>)

------ LinkedList<E>

TreeSet<E>

LinkedList()

addFirst(e:E)
addLast(e:E)
getFirst():E
getlast():E
removeFirst():E
removelast():E

LinkedList(c:Collection<? extends E>)

TreeSet()

TreeSet(c:Collection<? extends E>)
TreeSet(c:Comparator<? super E>)

<<Interface>>

Set<E>

