[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: _Hlk126925265]CS 1302 – Sample Test 2 Handout
Tear this page off to use for reference Turn this page in with test.

[image:]The information below will be used for problems 1-2.

Dog Class
You can assume the Dog class is already written, except for this method which you will write:
· bulkUp(amount:double) – Increases the dog’s weight by amount.

WolfDog Class
You will write most of the WolfDog (can abbreviation: WD) class, which is a subclass of Dog. It requires following members:

a. toughness instance variable.
b. WolfDog(name:String, weight:double, toughness:int) – Constructor.
c. WolfDog(name:String, weight:double) – Constructor, in this case, the toughness is set to 1. Use best practices.
d. getPower():double – Returns the weight of the dog multiplied by the toughness.
e. You do not need to write the getToughness method; however, you can assume it exists.

Person Class
You will write most of the Person class. This class requires the following members:
a. An array of size=20 of Dog objects (you may NOT use an ArrayList)
b. addDog(d:Dog) – Adds d to dogs if there is available space in the array.
c. addDogs(newDogs:Dog[]) – add all the newDogs to the dogs array. You can assume newDogs is full.
d. getDog(i:int):Dog – Returns the dog at i if i is valid and null otherwise.
e. getDogWithName(name:String) – Returns the dog whose name is name, if found, and null otherwise.
f. [bookmark: _Hlk177215520]remDog(i:int):Dog – Returns and removes the dog at i (you can assume i is valid).
g. totalDogPower():double – Returns the total power of all the dogs (and subclasses) added together.
h. averageWolfDogPower():double – Returns the average power of all the wolf dogs.
i. totalWolfDogToughness():int – Returns the total toughness of all the wolf dogs added together.
j. leastWeightDog():Dog – Returns the dog with least weight
k. maxWeight():double – Returns the weight of the dog with largest weight.

You can assume the Person class has:
· a no-arg constructor that does nothing.
· a getNumDogs method that returns the number of dogs in the dogs array.

	CS 1302 – Sample Test 2
	Name:
	

	
	
	Print: FirstName LastName

Closed Book Test. No Notes Allowed. Write answers on the test.
1. (60-70 points) Write the code described on the handout.
a. Write the method only for the Dog class.
b. Write the WolfDog class as described.
c. Write the Person class as described.

2. (15-20 points) Write a line of code that:

a. Creates a Dog (any name and weight)
	

b. Creates a WolfDog with toughness equal to 4 (any name and weight)
	

c. Creates a Person.
	

d. Adds one of the dogs from above to the person.
	

For the rest of the questions, assume many dogs have been added to the person.
e. Use the appropriate Person method to get the 5th dog and store the result in a variable.
	

f. Use the appropriate Person method to get the total power of all the dogs added together and store the result in a variable.
	

g. Use the appropriate Person method to get dog with the least weight and store the result in a variable.
	

h. Suppose you have references to 2 dogs: d1 & wd2. Define an array, newDogs, to hold these two dogs and put them in the array. Write 1-3 lines to accomplish this.
	

	

	

i. Use the appropriate Person method to add the dogs in newDogs (part h above) to the person.
	

j. Suppose you have a reference to a Person, p that has some number of dogs. Write a snippet of code to loop through the person and print the weight of each dog with one decimal.
	

	

	

	

[bookmark: _GoBack]
	

	

3. [bookmark: _Hlk126926331]Consider classes A and B shown in the table below. What output do each of these object creations produce?

	[bookmark: _Hlk178155536]
	Code
	Output

	a.
	A a1 = new B();
	

	b.
	A a2 = new B(22);
	

	c.
	A a3 = new B("Q");
	

	class A {
	public A() {
		this("M");
	}
	
	public A(String s) {
		System.out.print("L" + s);
	}
}
	class B extends A {
	public B() {
		this("N");
	}
	
	public B(int num) {
		System.out.print("P");
	}

	public B(String s) {
		super(s);
		System.out.print("O");
	}
}

4. Consider the class diagram and references shown below. For each of the Assignments, determine whether the assignment compiles (valid) or does not compile (invalid)

	Class Diagram
	References
	Assignments

	
[image:]
	
A a = new A();
B b = new B();
C c = new C();
D d = new D();

	1. [bookmark: _Hlk178155354]B b1 = a; Compiles or Doesn’t Compile
2. D d1 = b; Compiles or Doesn’t Compile
3. A a1 = b; Compiles or Doesn’t Compile
4. C c1 = d; Compiles or Doesn’t Compile
5. B b2 = d; Compiles or Doesn’t Compile
6. A a2 = d; Compiles or Doesn’t Compile
7. B b3 = c; Compiles or Doesn’t Compile
8. A a3 = c; Compiles or Doesn’t Compile

5.
a. Consider the partial StackOfPersons class below. In the box below, write the push & pop methods for this stack.
public class StackOfPersons {
	private Person[] persons;
	private int size = 0;

	public StackOfPersons(int capacity) {
		persons = new Person[capacity];
	}
	
	public boolean isEmpty() {
		return size == 0;
	}
	

}
b. Suppose you have two Person objects, p1 and p2. Write a snippet of code to
i. create a StackOfPersons with capacity 50 (abbreviate SOP),
	

ii. push the two persons onto the stack,
	

	

iii. pop the stack, storing the value that is returned in a variable.
	

2

image1.jpeg
Person(P) Sot Dog (D)
-numDogs:int & #name:String
-dogs:Dog[20] #weight:double
+addDog(d:Dog) +Dog(name:String,weight:double)
+addDogs(dogs:Dogl[]) +getName():String
+getDog(i:int):Dog +getWeight():double
+getDogWithName(name:String):Dog +power():double
+removeDog(i:int):Dog +bulkUp(amount:double)

+getNumDogs():int
+totalDogPower():double
+averageWolfDogPower():double
+totalWolfDogToughness():int
+leastWeightDog():Dog
+leastWeight():double

WolfDog (WD)

-toughtness:int

+WolfDog(name:String,weight:double,toughness:int)
+WolfDog(name:String,weight:double)
+getToughness():int

+power()

image2.jpeg

