CS 1302 – Lab 12

This is a tutorial about Sets: HashSet and TreeSet. There are 6 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	The HashSet Class
	21.1-21.2

	2
	HashSet Example – Unique Words
	21.4

	3
	HashSet Example – Set Operations
	21.4

	4
	Speed Comparison: HashSet, ArrayList & LinkedList
	21.3

	5
	The TreeSet Class
	21.2

	6
	TreeSet with Custom Objects
	21.2



To make this document easier to read, it is recommend that you turn off spell checking in Word:
 
1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - The HashSet Class

In this stage we consider the Set interface and the HashSet class.

1. Read (no action required) – 

a. As shown in the class diagram below, Set is a subinterface of Collection. The Set interface

· Introduces no new methods (other than what is in Collection)

· Does not allow duplicate elements. More specifically, a set can contain no two elemenets, e1 and e2 such that e1.equals(e2) is true. 

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\09_Ch 20 - List, Stack, Q, Priorty Q\d2.jpg]



b. The HashSet class implements the Set interface and introduces no new methods. Some important properties of a HashSet:

· The order of items is not preserved. If you add the integers 1, then 2 then 3 to a HashSet and then iterate over the elements, you might get them back out 2,3,1, or some other order.

· There is no sequential access; there is no get method. Remember that get is specified in the List interface and a Set is not a List.  In other words, you can’t say “give me the 3rd item”.

· It has a constructor that accepts any type of Collection. Thus, you can turn any type of Collection into a Set, and a side affect is that any duplicate elements will be dropped.

· HashSet is the fastest of all collection classes at adding, removing, and seeing if an item is in the set (contains).

2. Setup – Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.
b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use.
c. Create a Project – Create a Java project with the name, lab12_lastName, e.g. lab12_gibson.
d. Create a package named hashset_examples.

3. Run Example – We illustrate the the order of insertion is not preserved in a HashSet.

a. Create a class named HashSetExamples (in the hashset_examples package) and replace everything in the class (except the package statement at the top) with:

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import java.util.Set;

public class HashSetExamples {

	public static void main(String[] args) throws FileNotFoundException {
 		hsExamples1();
	}
		
	public static void hsExamples1() {
		System.out.println("HashSet Example 1\n-----------------");

		Set<String> hsCities = new HashSet<String>();
		hsCities.add("Atlanta");
		hsCities.add("New York");
		hsCities.add("Durango");
		hsCities.add("New York"); // duplicate, will not be added
		System.out.println("            Order cities added to set: Atlanta, New York, Durango");
		
		System.out.print("Order when set iterated with for loop: ");
		for(String city : hsCities) {
			System.out.print(city + ", ");
		}
		System.out.println();
	}
}

b. Run the code and verify the output. Your objective is to see how a HashSet is created, how to add items, that duplicates are not added, how to iterate over them, and to illustrate that the order that items are added is not preserved.

4. Run Example – In this example we show how we can remove the duplicate items in an ArrayList by creating a HashSet from it. 

a. Read (no action required) – HashSet has a constructor that takes any type of Collection (List, Queue, Set, etc) adding the elements of that Collection to the HashSet. Since HashSet doesn’t allow duplicates, any duplicates will be ignored. For example:

List<String> words = new ArrayList<>(Arrays.asList("not", "go", "at", "not", "go"));
			
Set<String> uniqueWords = new HashSet<String>(words);

b. Add the method below to the HashSetExamples class:

public static void hsExamples2() {
	System.out.println("\nHashSet Example 2\n-----------------");
	
	List<String> words = new ArrayList<>(Arrays.asList("not", "go", "at", "see", "go", "be", "not"));
	System.out.println("Words in list: " + words);
			
	Set<String> uniqueWords = new HashSet<String>(words);
	System.out.println("Words in set : " + uniqueWords);
}

c. Add the line of code below to the end of main so that the method is called.

hsExamples2();

d. Run the code and verify the output. 



Stage 2 - HashSet Example – Unique Words

In this stage we consider a problem where a HashSets is useful.

5. Read (no action required) – 

a. We consider an example where we will read a text file that contains words (for simplicity the file will only contain words, no punctuation nor other markup). For example:

The dog is a rabbit until it is not a dog

b. From these words we will create two lists: one that contains all the words in the file (a single occurrence of each), and another list that contains duplicate words (words that occur more than once). For example, from the input above we will produce (remember, the order is not preserved in a HashSet):

      All words: [The, a, not, rabbit, is, until, it, dog]
Duplicate words: [a, is, dog]

We will do this using two HashSets, allWords and duplicateWords. 

c. First, we will read a word:

String word = input.next();

d. Next, we attempt to add the word to uniqueWords. If the word is unique, then it will be added. The add method returns true if the word was added and false otherwise. Thus, if the return is false (i.e. the word is not added) then we will simply add the word to the duplicateWords set. Of course if the word already exists in duplicateWords, it will not be added. For example: 

if(!allWords.add(word)) {
	duplicateWords.add(word);
}

Note that we could have written the block above, perhaps slightly more understandable, as shown below:

if(!allWords.contains(word)) {
	allWords.add(word);
}
else if(!duplicateWords.contains(word)) {
	duplicateWords.add(word);
}

6. Create Text File

a. Select the hashset_examples package in the Solution Explorer.
b. Choose: File, New, Untitled Text File.
c. Copy the line of text below into the file:

The dog is a rabbit until it is not a dog

d. Choose: File, Save As
e. Navigate to the src/hashset_examples folder.
f. Supply the File name: “words.txt”
g. Choose: OK
h. Verify that words.txt is in the hashset_examples package. Drag it there if necessary.

7. Run Example – We code the preceding example

a. Add the method below to the HashSetExamples class:

private static void hsExamples3() throws FileNotFoundException {
	System.out.println("\nHashSet Example 3\n-----------------");
	
	String path = "src/hashset_examples/words.txt";
	Scanner input = new Scanner(new File(path));
	
	HashSet<String> allWords = new HashSet<>();
	HashSet<String> duplicateWords = new HashSet<>();
	
	// Reads file and creates a HashSet of all words in the text and
	// a HashSet of words that are duplicates.
	while( input.hasNext() ) {
		String word = input.next();
		if(!allWords.add(word)) {
			duplicateWords.add(word);
		}
	}
	
	input.close();
	System.out.println("      All words: " + allWords);
	System.out.println("Duplicate words: " + duplicateWords);
}

b. Add the line of code below to the end of main so that the method is called.

hsExamples3();

c. Run the code and verify the output. 



Stage 3 - HashSet Example – Set Operations

In this stage we consider another problem we can solve with HashSets.

1. Read (no action required) – 

a. Consider the following situation, we have a set of employees (represented by their integer id) that have completed training module 1: 

Set<Integer> hsEmps1 = new HashSet<>(Arrays.asList(1,2,3,4,5,6,7));

And, we have another set that have completed training module 2:

Set<Integer> hsEmps2 = new HashSet<>(Arrays.asList(1,3,5,6,7,8,9));

Thus, among other observations, we can see that employee 1 has completed both training modules, employee 2 has completed only the first module, and employee 8 has completed only the second module.

b. Now, suppose we want to write code to create a new set that has the employees that have completed both training modules. We can do this by first creating a new HashSet with all the employees that have completed training module 1:

Set<Integer> hsTeamsInCommon = new HashSet<>(hsEmps1);

c. Next, we intersect (retainAll) this new set with the set of employees that have completed the second module:

hsTeamsInCommon.retainAll(hsEmps2);

Thus, hsTeamsInCommon contains all the employees that have completed both training modules and that we haven’t modified either of the original sets: hsEmps1 and hsEmps2.

d. In the example that follows, we write code to create sets that contain all employees (ids) who complete: (a) both modules, (b) either module (1,2, or both), (c) only module 1, (d) only module 2, (e) exactly one of the modules. For example:

Employees who completed:
   module 1: [1, 2, 3, 4, 5, 6, 7]
   module 2: [1, 3, 5, 6, 7, 8, 9]
Employees who completed both:
   [1, 3, 5, 6, 7]
Employees who completed either module:
   [1, 2, 3, 4, 5, 6, 7, 8, 9]
Employees who completed only module 1:
   [2, 4]
Employees who completed only module 2:
   [8, 9]
Employees who had exactly 1 module:
   [2, 4, 8, 9]

Note: Observe that the order of insertion appears to be preserved in these sets. This is conincidence.[footnoteRef:2]
 [2:  https://stackoverflow.com/questions/9345651/ordering-of-elements-in-java-hashset] 

e. Similarly, we can create the following sets:

// Employees who completed either training module (1,2, or both):
Set<Integer> hsEmpsEither = new HashSet<>(hsEmps1);
hsEmpsEither.addAll(hsEmps2);

// Employees who completed only module 1 (but not module 2)
Set<Integer> hsOnlyMod1 = new HashSet<>(hsEmps1);
hsOnlyMod1.removeAll(hsEmps2);

// Employees who completed only module 2 (but not module 1)
Set<Integer> hsOnlyMod2 = new HashSet<>(hsEmps2);
hsOnlyMod2.removeAll(hsEmps1);

// Employees who completed exactly one module (either 1 or 2, but not both)
Set<Integer> hsExactly1Mod = new HashSet<>(hsOnlyMod1);
hsExactly1Mod.addAll(hsOnlyMod2);		
	
8. Run Example – We code the preceding example

a. Add the method below to the HashSetExamples class:

private static void hsExamples4() {
	System.out.println("\nHashSet Example 4\n-----------------");
	
	// Employees who completed training module 1
	Set<Integer> hsEmps1 = new HashSet<>(Arrays.asList(1,2,3,4,5,6,7));
	// Employees who completed training module 2
	Set<Integer> hsEmps2 = new HashSet<>(Arrays.asList(1,3,5,6,7,8,9));

	// Employees who completed both training modules.
	Set<Integer> hsTeamsInCommon = new HashSet<>(hsEmps1);
	hsTeamsInCommon.retainAll(hsEmps2);
	
	System.out.println("Employees who completed:\n   " + "module 1: " + hsEmps1 + "\n   " + "module 2: " + hsEmps2);
	System.out.println("Employees who completed both:\n   " + hsTeamsInCommon);

	// Employees who completed either training module (1,2, or both):
	Set<Integer> hsEmpsEither = new HashSet<>(hsEmps1);
	hsEmpsEither.addAll(hsEmps2);
	System.out.println("Employees who completed either module:\n   " + hsEmpsEither);
	
	// Employees who completed only module 1 (but not module 2)
	Set<Integer> hsOnlyMod1 = new HashSet<>(hsEmps1);
	hsOnlyMod1.removeAll(hsEmps2);
	System.out.println("Employees who completed only module 1:\n   " + hsOnlyMod1);		
	
	// Employees who completed only module 2 (but not module 1)
	Set<Integer> hsOnlyMod2 = new HashSet<>(hsEmps2);
	hsOnlyMod2.removeAll(hsEmps1);
	System.out.println("Employees who completed only module 2:\n   " + hsOnlyMod2);
	
	// Employees who completed exactly one module (either 1 or 2, but not both)
	Set<Integer> hsExactly1Mod = new HashSet<>(hsOnlyMod1);
	hsExactly1Mod.addAll(hsOnlyMod2);		
	System.out.println("Employees completed exactly 1 module:\n   " + hsExactly1Mod);		
}

b. Add the line of code below to the end of main so that the method is called.

hsExamples4();

c. Run the code and verify the output. 

Stage 4 - Speed Comparison: HashSet, ArrayList & LinkedList

In this stage we will do an experiment to compare how much time it takes to remove values from HashSet, ArrayList, and LinkedList. 

9. Read (no action required) – This is similar to the speed comparison we did in Lab 9.

a. Consider the following experiment: Suppose we have a HashSet that initially contains 50,000 (unique) random integers. We will time how long it takes to remove 25,000 random integers from this HashSet. Note that almost none of the removes will be successful (i.e. they don’t exist in HashSet, however this does not change the dramatic time results we will see). Here is an algorithm:

Create a HashSet, hashSet with 50,000 (unique) random integers.
Create an ArrayList, vals with 25,000 (unique) random integers.
Start timing
For(int x : vals)
	hashSet.remove(x)
Stop timing

b. Next, consider repeating this experiment where the HashSet (hashSet) initially has 100,000 random integers (we will still remove just 25,000). Then 150,000.

c. Repeat all the above except using a LinkedList, and then repeat using ArrayList. The results I obtains are pretty dramatic. Note, the time to do the removes for:
· LinkedList and ArrayList takes increasingly longer time as the size of the collection increases.
· HashSet does not seem to be affected by the size of the collection and is much faster.

10. Run Example 

a. Create a class named SpeedComparison (in the hashset_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;

public class SpeedComparison {
	static final int[] INITIAL_LIST_SIZE = {50000, 100000, 150000, 200000};
	static final int NUM_REMOVES = 25000;

	public static void main(String[] args) {
		for( int listSize : INITIAL_LIST_SIZE) {
			// Create ArrayList
			ArrayList<Integer> aryList = generateArrayList(listSize);
			// Create values to remove
			ArrayList<Integer> valsToRemove = generateRemovesList(NUM_REMOVES,aryList);
			// Create LinkedList from ArrayList
			List<Integer> lnkList = new LinkedList<>(aryList);
			// Create HashSet from ArrayList
			Set<Integer> hashSet = new HashSet<>(aryList);

			doExperiment(lnkList, valsToRemove);
			doExperiment(aryList, valsToRemove);
			doExperiment(hashSet, valsToRemove);
		}
	}

	public static ArrayList<Integer> generateArrayList(int numValues) {
		ArrayList<Integer> ints = new ArrayList<>();

		int numAdded = 0;
		while( numAdded < numValues ) {
			// Generate an integer between 0 and max int
			int val = (int)(Math.random()*Integer.MAX_VALUE);

			if( !ints.contains(val)) {
				// If value is not in set, then add it to set and list
				ints.add(val);
				numAdded++;
			}
		}
		return ints;
	}

	public static ArrayList<Integer> generateRemovesList(int numValues, ArrayList<Integer> vals) {
		// Build set of indices
		List<Integer> indices = new ArrayList<>();
		for(int i=0; i<vals.size(); i++) {
			indices.add(i);
		}
		// So that random order is achieved
		Collections.shuffle(indices);
		
		// Build removes list
		ArrayList<Integer> removes = new ArrayList<>();
		for(int i=0; i<numValues; i++) {
			removes.add(vals.get(indices.get(i)));
		}
		return removes;
	}

	public static void doExperiment(Collection<Integer> list, Collection<Integer> vals) {
		// Use for output
		int initialSize = list.size();
		String className = list.getClass().getName();
		int locPeriod = className.lastIndexOf(".");
		className = className.substring(locPeriod+1);
	    String msg = String.format("%s size: %d, time to remove %d vals: ", className, list.size(), vals.size());

		// Begin timing
	    long begTime = System.currentTimeMillis();

	    for(int x : vals) {
	    	list.remove(x);
	    }
		// Stop timing
		long endTime = System.currentTimeMillis();
		// Calculate total time in seconds.
	    double totTime = (endTime-begTime)/1000.0;
	    msg += String.format("%.3f sec", totTime);
	    System.out.println(msg);
	}
}

b. Run the code. It will probably take close to a minute to finish. Study the results, they probably will be astounding! Notice that the ArrayList and LinkedList take longer and longer; however, the HashSet doesn’t increase in time (or hardly at all, it may even decrease!) even as the size of the set gets larger.



Stage 5 - The TreeSet Class

In ths stage we consider the TreeSet class.

11. Read (no action required) – TreeSet is another implementation of the Set interface as shown in the class diagram below. 
[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\09_Ch 20 - List, Stack, Q, Priorty Q\d4.jpg]















Some important properties of a TreeSet:

· Items are ordered from smallest to largest according to their natural ordering or a Comparator.

· There is no sequential access; there is no get method. However, it does introduce a number of methods to return the first (smallest), last (largest), and various subsets (headset, tailSet, subSet).

· If you want to create a TreeSet of custom objects, the class must either implement Comparable or a Comparator must be supplied in the constructor.

· TreeSet is the fastest of all collection classes at keeping items ordered. 




12. Run Example

a. Create a package named: treeset_examples.

b. Create a class named TreeSetExamples (in the treeset _examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

public class TreeSetExamples {
	public static void main(String[] args) {
 		tsExamples1();
	}

	public static void tsExamples1() {
		System.out.println("TreeSet Example 1\n-----------------");

		Set<String> tsCities = new TreeSet<String>();
		tsCities.add("New York");
		tsCities.add("Atlanta");
		tsCities.add("Durango");
		tsCities.add("Moab");
		System.out.println("                   Order cities added: New York, Atlanta, Durango, Moab");

		System.out.print("Access cities (ordered) with for loop: ");
		for(String city : tsCities) {
			System.out.print(city + ", ");
		}
		System.out.println();
	}
}

c. Run and verify the output. Your objective to observe that a TreeSet keeps the elements ordered.





13. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\09_Ch 20 - List, Stack, Q, Priorty Q\d3.jpg]Read (no action required) –

a. Above, we showed that TreeSet is-a Set. Actually, there are two interfaces in between (as shown in the class diagram on the right) that prescribe the behaviors we saw in TreeSet  . We first consider a few of the methods specified in the SortedSet interface: 

	Method
	Description

	first()
	The first (smallest) element is returned

	last()
	The last (largest) element is returned

	headSet(toElement:E)
	Returns a SortedSet of elements that are strictly less than toElement. {x|x<toElement}

	tailSet(fromElement:E)
	Returns a SortedSet of elements greater than or equal to fromElement. {x|x>=fromElement}

	subSet(fromElement:E, toElement:E)
	Returns a SortedSet of elements between fromElement, inclusive to toElement exclusive. 
{x|fromElement <= x < toElement}



b. Note: The later three methods have overloaded versions that allow a Boolean to specify whether to be inclusive or exclusive with respect to the “fromElement” and/or “toElement”.

14. Run Example

a. Add the method below to the TreeSetExamples class:

public static void tsExamples2() {
	System.out.println("\nTreeSet Example 2\n-----------------");

	TreeSet<String> tsCities = new TreeSet<String>();
	tsCities.add("New York");
	tsCities.add("Atlanta");
	tsCities.add("Durango");
	tsCities.add("Moab");
	tsCities.add("Chicago");

	System.out.print("Access cities (ordered) with for loop: ");
	for(String city : tsCities) {
		System.out.print(city + ", ");
	}
	System.out.println();

	System.out.println("\nfirst(): " + tsCities.first());
	System.out.println("last(): " + tsCities.last());
	System.out.println();

	SortedSet<String> ssHead = tsCities.headSet("Denver");
	System.out.println("Cities less than 'Denver'");
	System.out.println("  headSet(\"Denver\"): " + ssHead);
	ssHead = tsCities.headSet("Durango");
	System.out.println("Cities less than 'Durango'");
	System.out.println("  headSet(\"Durango\"): " + ssHead);
	ssHead = tsCities.headSet("Fort Worth");
	System.out.println("Cities less than 'FortWorth'");
	System.out.println("  headSet(\"FortWorth\"): " + ssHead);
	System.out.println();

	SortedSet<String> ssTail = tsCities.tailSet("Denver");
	System.out.println("Cities greater than 'Denver'");
	System.out.println("  tailSet(\"Denver\"): " + ssTail);
	ssTail = tsCities.tailSet("Durango");
	System.out.println("Cities greater than 'Durango'");
	System.out.println("  tailSet(\"Durango\"): " + ssTail);
	ssTail = tsCities.tailSet("Fort Worth");
	System.out.println("Cities greater than 'Fort Worth'");
	System.out.println("  tailSet(\"Fort Worth\"): " + ssTail);
	ssTail = tsCities.tailSet("Raleigh");
	System.out.println("Cities greater than 'Raleigh'");
	System.out.println("  tailSet(\"Raleigh\"): " + ssTail);
	System.out.println();
		
	SortedSet<String> ssSub = tsCities.subSet("Chicago", "New York");
	System.out.println("Cities between 'Chicago' (inclusive) and 'New York'");
	System.out.println(" subSet(\"Chicago\", \"New York\"): " + ssSub);
	ssSub = tsCities.subSet("A", "H");
	System.out.println("Cities between 'A' (inclusive) and 'H'");
	System.out.println("  subSet(\"A\", \"H\"): " + ssSub);
}

b. Add the line of code below to the end of main so that the method is called.

tsExamples2();

c. Run the code and verify the output. 

15. Read (no action required) – Next, we consider a few of the methods specified in the NavigableSet interface. These (the first four below) are similar to the methods in SortedSet except that they return a single item (or nothing). We will not illustrate these nor show example code for these.

	Method
	Description

	floor(e:E)
	The largest element <= e is returned

	lower(e:E)
	The largest element < e is returned

	ceiling(e:E)
	The smallest element >= e is returned

	higher(e:E)
	The smallest element > e is returned

	pollFirst()
	Returns the smallest element and removes it

	pollLast()
	Returns the largest element and removes it






Stage 6 - TreeSet with Custom Objects

In this stage we consider the TreeSet class that holds instances of custom class.

16. Read (no action required) – 

a. In the example that follows, we consider a TreeSet that holds Employee objects ordered on salary. TreeSet has a constructor that accepts a Comparator to maintain the order of the set. Thus, we will use a EmployeeSalaryComparator (as considered in Lab 10). For example:

TreeSet<Employee> tsEmps = new TreeSet<>(new EmployeeSalaryComparator());

tsEmps.add(new Employee("Orville", 553572246, 22.32));
...

b. Next, in the example we will find the set of Employees that have a salary 30 or higher. We will use an approach we used in Lab 10 where we created a “dummy” Employee object with just the information we know (the salary of 30.0). Then, we pass the dummy to the tailSet method:

Employee emp = new Employee("unknown", 0, 30.0);
SortedSet<Employee> sSet = tsEmps.tailSet(emp);

c. Finally, we illustrate a method from the NavigableSet interface, floor, to find the employee with the largest salary that is less than or equal to 30:

Employee eSal30 = tsEmps.floor(emp);

17. Run Example

a. Create a class named Employee (in the treeset _examples package) and replace everything in the class (except the package statement at the top) with:

public class Employee {
	private String name;
	private int ssNum;
	private double salary;

	public Employee(String name, int ssNum, double salary) {
		this.name = name;
		this.ssNum = ssNum;
		this.salary = salary;
	}

	public String getName() { return name; }
	public int getSSNum() { return ssNum; }
	public double getSalary() { return salary; }

	public String toString() {
		return String.format("Name: %-8s - SSN: %d\tSalary: $%.2f", getName(),
                getSSNum(), getSalary() );
	}
}

b. Create a class named EmployeeSalaryComparator (in the treeset _examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Comparator;

public class EmployeeSalaryComparator implements Comparator<Employee> {
	public int compare( Employee e1, Employee e2 ) {
		double diff = e1.getSalary() - e2.getSalary();
		if( diff < 0.0 ) return -1;
		else if( diff > 0.0 ) return 1;
		else return 0;
		
	}
}

c. Create a class named EmployeeDriver (in the treeset _examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

public class EmployeeDriver {

	public static void main(String[] args)
	{
		TreeSet<Employee> tsEmps = new TreeSet<>(new EmployeeSalaryComparator());

		tsEmps.add(new Employee("Orville", 553572246, 22.32));
		tsEmps.add(new Employee("Boggs", 716533892, 12.57));
		tsEmps.add(new Employee("Lyton", 476227851, 77.88));
		tsEmps.add(new Employee("Dern", 243558673, 23.44));
		tsEmps.add(new Employee("Abscome", 994334662, 55.23));

		System.out.println("Original List");
		printList(tsEmps);

		// Get employees with Salary 30 or higher. First, create "dummy" employee.
		Employee emp = new Employee("unknown", 0, 30.0);
		SortedSet<Employee> sSet = tsEmps.tailSet(emp);
		System.out.println("\nEmployees with Salary >= 30: ");
		printList(sSet);
		
		// Get employee with largest Salary <= 30. Use "dummy" employee from above.
		Employee eSal30 = tsEmps.floor(emp);
		System.out.println("\nEmployee with largest Salary <= 30: " + eSal30);
	}

	private static void printList(Set<Employee> emps) {
		for(Employee e : emps) {
			System.out.println("   " + e);
		}
	}

}

d. Run and verify the output.

Submission

1. Do the following:

a. Zip all the folders (packages) under the src folder into a zip file named: lab12_lastname.zip
b. [bookmark: _GoBack]Upload your zip file to the lab12 dropbox in Blazeview.

You are done!

Time to Remove 25,000 Integers
HashSet	50000	100000	150000	200000	8.0000000000000002E-3	4.0000000000000001E-3	5.0000000000000001E-3	3.0000000000000001E-3	ArrayList	50000	100000	150000	200000	0.63700000000000001	1.349	2.3559999999999999	2.968	LinkedList	50000	100000	150000	200000	1.119	2.4409999999999998	4.6989999999999998	6.4050000000000002	Collection Size
Time (sec)
16

image2.jpeg
<<Interface>>
Collection<E>

2
(T s s sl poedecccccccncccccccencnaa. ]
A H :
<<Interface>> <<Interface>> <<Interface>>
List<E> Queue<E> Set<E>
L é L // Nothing new added,
H H // no duplicates

r----| ArrayList<E> :
r----| LinkedList<E> |-------"

.D

TreeSet<E>

TreeSet()

Stack<E> TreeSet(c:Collection<? extends E>)
TreeSet(c:Comparator<? super E>)
ceiling/floor(e:E):E

first/last():E
headSet/tailSet(e:E):SortedSet
higher/lower(e:E):E





image3.jpeg
Collection<E>

A

Set<E>

// nothing new added
// doesn't allow duplicates

A

SortedSet<E>

first():E, last():E
headSet(to:E):SortedSet<E>
tailSet(from:E):SortedSet<E>
subSet(from:E,to:E):SortedSet<E>

A

NavigableSet<E>

ceiling(e:E):E, floor(e:E):E
higher(e:E):E, lower(e:E):E
pollFirst():E, pollLast():E

A

TreeSet<E>

TreeSet()
TreeSet(c:Collection<? extends E>)
TreeSet(c:Comparator<? super E>)





image1.jpeg
<<Interface>>

List<E>
)
r----| ArrayList<E>

<<Interface>>
Collection<E>

<<Interface>>
Queue<E>

I
<<Interface>>

Set<E>

23

// Nothing new added,
// no duplicates

7N

HashSet<E>

HashSet()
HashSet(c:Collection<? extends E>)
// No new behaviors





