[bookmark: _Hlk110931391]Lab 2 – Using Eclipse
Contents
1	Introduction	1
2	Hello World	2
3	Using the Debugger	7
4	Auto-Generate Code	15
5	Commenting Out Code	17
6	Refactoring: Renaming Variables, Methods, Classes, Packages	18
7	Copying Classes & Packages	19
8	Resetting IntelliSense/Autocomplete	20
9	Submitting your Work	21
Appendix 1	n/a	22
	

[bookmark: _Toc166936584]Introduction
The objective of this Lab is to learn the basic features of Eclipse to do Java development. You will learn: (a) how to create packages and classes and run them, use the debugger to set breakpoints and step through code, (c) how to autogenerate getters, setters, constructors, and toString, (d) quickly comment out a selection of code, (e) use refactoring to rename variables, methods, classes, packages, and projects, (f) copy classes and packages, (g) use IntelliSence and autocompete, and (h) how to zip up your work for submission. If you want additional resources, these are some tutorials on Eclipse:
· https://courses.cs.washington.edu/courses/cse373/13wi/eclipse-tutorial/index.shtml
· https://www.tutorialspoint.com/eclipse/index.htm
· https://www.vogella.com/tutorials/Eclipse/article.html
Finally, IntelliJ is another popular IDE for Java development. We will not cover IntelliJ; however, here are some tutorials:
· https://courses.cs.washington.edu/courses/cse373/22su/projects/cse143review/intellij/
· https://www.tutorialspoint.com/intellij_idea/index.htm

[bookmark: _Toc166936585]Hello World
In this stage we will create a HelloWorld app and along the way learn how to write code using Eclipse.
1. (Read, no action required) Basic information about using Eclipse:
a. Two important definitions:
i. Workspace – A folder on your computer where you store projects. Each time you launch Eclipse, it asks you for a workspace folder. You will create this folder using File Explorer.
ii. Project – A folder inside a workspace where you store code for a particular assignment (e.g. lab or hw). A workspace you can have any number of projects. A project is created by Eclipse.
b. Next, we discuss several ways to organize your code for this class:
i. Use one workspace, e.g cs1302_code for all the work you do in this class. Inside this workspace you would have projects with names like: hw1, hw2, …, lab1, lab2, ….
ii. Create a separate workspace for each lab, homework, etc. For example, you might have a lab01_code workspace that contains a lab01 project, a lab02_code workspace that contains a lab02 project, etc.
iii. Some variation of above. It is completely up to you. And, the name for the workspace(s) is completely up to you.
Note: I use the suffix “_code” to indicate that such a folder is a workspace.
c. Next, I’ll give you a sense of how I use workspaces to manage all the code that I maintain for this course. I have the following workspaces for this course:
i. An individual workspace for each chapter (e.g. ch09_code, ch10_code, etc.) with projects for each example and practice problem for that chapter
ii. One workspace for all the homework solutions (e.g. hw_code), with projects for each homework: hw01_solution, hw02_solution, etc.
iii. One workspace for all the test solutions (e.g. test_code) with projects: test1, test2, etc.
Again, do whatever makes sense for you.
2. Create your workspace – Do the following:
a. Create a workspace, i.e. create a folder on your hard/flash drive. For example: cs1302_code (or lab02_code, or labs_code, etc).
b. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a6.jpg]Launch Eclipse by double-clicking an icon on the desktop that is similar to the one shown on the right. (Yours will probably say something like: eclipse-2023-06)
c. As Eclipse opens, it will ask you to select a workspace as shown below. Choose: Browse and navigate to the folder you created above for your workspace (or paste the location into the textbox).
[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b1.jpg]
d. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\00_Eclipse\a2.jpg]You will probably see a Welcome Screen. Close it if you want to.

3. Create a project – Do the following:
a. Choose: File, New, Java Project
	[image:]Note: In the off chance you do not see: Java Project, then try this:

Choose: File, New, Project, Java, Java Project, Next

b. Supply the name, lab02_lastname, e.g. lab02_gibson.
c. Choose: Finish.
	Eclipse Note: A workspace can contain any number of projects. Thus, as we said before, you can create one workspace and have a separate project for each lab, homework, etc. Or, as we said before, if you are creating a separate workspace for each assignment, then you will probably have just one project in each workspace. However, I frequently have several. For example, if I’m going to add something tricky to an existing piece of code, I would first copy the project and give it the name: myproj_ver1, and now that is the backup, and myproj is the current one that I will modify. Before the next change to code, I’d copy it to myproj_ver2, etc. A much better way to go about this is to use GitHub to store your projects. You will learn that in CS 4321 and other courses.

d. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b4.jpg]Find the Package Explorer on the left side of the window and expand the project node (lab01_gibson) and verify that the Package Explorer looks similar to the figure on the right (yours will say, lab02…). Next, we create a package inside src node and that is where the code you write will reside.
If you do not see the Package Explorer, then choose: Window, Show View, Package Explorer.
4. [image:]Create a package – Do the following (in the figure, yours will say, lab02…):
a. Select the project node in the Package Explorer (or the src node)
b. Choose: File, New, Package
c. Supply the name, prob1 (lower-case)
d. Choose: Finish.

	Java Note: A package in Java is way to keep code organized. Each homework and lab will have several problems for you to work. You will create a package for each problem. We will discuss packages more at some point in the course.

e. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b5.jpg]Verify that the Package Explorer looks similar to the figure on the right (yours will say, lab02…).

5. Create a class – Do the following (for “Source folder”, yours will say, lab02…):[image: E:\Data-Classes\CS 1302 - Programming 2\notes\00_Eclipse\a1.jpg]
a. Select the prob1 package node in the Package Explorer.
b. Choose: File, New, Class (see figure on right).
c. Verify that the Package is prob1
d. Supply the Name: Employee
e. Select the check box to generate main.
f. Choose: Finish.
g. Expand the nodes in the Package Explorer and verify that it looks similar to the figure below.
 Take a minute to study and understand how the Package Explorer organizes your code.
[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b6.jpg]

h. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b7.jpg]Verify that the Code Window looks similar to the figure on the right.

i. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\b8.jpg]Leave (but don’t close) Eclipse and open File Explorer. Navigate to your workspace folder. Verify that it looks similar to the figure on the right.
 Take a minute to verify how your workspace and project are stored on your hard drive.
We will not utilize these folders: .metadata, .settings, bin.

6. Add some code – Do the following:[image: E:\Data-Classes\CS 1302 - Programming 2\notes\00_Eclipse\a4.jpg]
a. Copy this (incorrect) instance variable below and place in the Employee class (do not put it in main)
pivate String name;
b. Read (no action required) – The code is compiled as you type. You’ll see a little red X in the left margin when there are compile errors and red squiggly lines under the problem.
c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c1.jpg]Hover your mouse above the red X to see what the compile error is.
 Note: You can right-click on the X and choose: Quick Fix to fix some errors. You can try on this one but none of the suggested solutions is correct.
d. Fix the error: i.e. change “pivate” to “private”.
e. Add this line to main:
		System.out.println("Hello World");
7. [image: E:\Data-Classes\CS 1302 - Programming 2\notes\00_Eclipse\a5.jpg]Run Code – Do this:
a. There are four ways you can run your code, choose one:
i. Click the green arrow in the Toolbar as shown in the figure on the right
ii. Choose: Run, Run
iii. Press Ctrl+F11
iv. Right-click in the source code and choose: Run As, Java Application.
· You may be presented a dialog asking how you want to run the file. If so, choose: “Run as Java Application.”
· You may be prompted to save your file
b. You should see “Hello World” in the Console window at the bottom as shown in the figure above.
c. Close: Employee.java.

[bookmark: _Toc166936586]Using the Debugger
In this stage you will learn to use the debugging features of Eclipse. A debugger allows you to execute your code one line at a time. Thus, you can execute one line, then observe the value of variables, execute the next line, observe the value of variables, etc. Note:
· Using the debugger is a very important and must-have skill.
· Pay close attention to these steps. If you get lost, or something does not work correctly, just back up and start again.
· If you really can’t get something to work, please, just get the spirit of the tutorial. You do not need to contact me, just move on.
· After you complete the steps below, feel free to experiment with the debugger before moving on.
· Learn to use the debugger! When your code doesn’t do what it is supposed to do, you have to find WHERE it goes astray. The answer is to use the debugger (otherwise, the old-fashioned way of putting print statements throughout your code---messy!)
8. Create a new package – Do the following:
a. Select the project node in the Package Explorer (e.g. lab01_gibsond)
b. Choose: File, New, Package
c. Supply the name, prob2 (lower-case)
d. Choose: Finish.
	Note: This will (probably) be the last time we provide explicit instructions to create a package. From now on it will be, “Create a package named prob2.”

9. Create a class – Do the following:
 The code below will be new to you. You are not expected to understand it exactly, though you will probably get be able to tell what is going on from completing these steps. We’ll spend a lot of time, 2-3 weeks, in class talking about writing classes. For now, we are just learning to use the debugger.
a. Select the prob2 package node in the Package Explorer.
b. Choose: File, New, Class
c. Verify that the Package is prob2
d. Supply the Name: Engineer
e. Choose: Finish.
f. Replace the code in the Engineer class with the code below; however, do not remove the package statement at the top of the existing file in the code window in Eclipse:

public class Engineer {

	// Instance variables
	private String name;
	private double hours[];

	// Constructor
	public Engineer(String name, double[] hours) {
		this.name = name;
		this.hours = hours;
	}

	// Getter for name instance variable
	public String getName() {
		return name;
	}

	// Method
	public double getWages(double payRate) {
		double totalHours = 0.0;
		for(double h : hours) {
			totalHours += h;
		}
		double wages = totalHours*payRate;
		return wages;
	}

	// Method
	@Override
	public String toString() {
		return name;
	}
}

10. Read (no action required) – Reference the comments in the class above and note the following.
· Instance variables are variables we can use inside the class. They represent the state of the class, the information that is important to keep around. In the example above, and engineer has a name and the hours that they worked.
· A constructor is similar to a method, except that it is used to create an Employee object. We will see how to create objects from classes shortly. The constructor accepts a name and an array of doubles, which represents the number of hours worked on each day and stores them in the instance variables.
· We use the this keyword to differentiate the instance variables from the parameters that have the same name.
· The getWages method accepts a pay rate. It adds all the hours in the array and then multiplies it by the pay rate to get the total wages earned, and then returns it.
Again, we will study these things in detail in class.
11. Create a class – Do the following:
a. Create a class named EngineerTest in the prob2 package and add the code below (see the previous two steps if necessary):
b. Replace the code in the EngineerTest class with the code below (do not remove the package statement at the top):
public class EngineerTest {
	public static void main(String[] args) {
		double[] hours = {8.0,8.0,8.0,8.0,8.0,0,0};

		// Call the constructor to create an Engineer object named: “e”
		Engineer e = new Engineer("Wilma", hours);

		// Call the getWages method on e
		double wages = e.getWages(20.0);
		String msg = e.getName() + " made $" + wages;
		System.out.println(msg);
	}
}
c. Run the program and observe the output
d. Power Tip – Select a method call, right-click, and choose:
· Open Declaration – To display the method’s code. Do that now with the getWages method.
· Open Call Hierarchy – To show all the places a method is used. Opens a Call Hierarchy tab at the bottom of the screen. You can click on each entry to take you to a method call. Return to Engineer Test and do this with the getWages method.
e. Power Tip – A very powerful search is found by pressing: Ctrl+h (or choosing: Search, Search). Most useful are the File Search and Java Search tabs.

12. Run the debugger – Do the following:
	Eclipse Note: As you go through the following steps you may lose track of where you are, get confused, etc. If so, simply stop debugging[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e1.jpg] by choosing: Run, Terminate (or press the red square on the Toolbar) and then start the section over.

a. Read (no action required) – A breakpoint is a place in the code where execution will stop when running in Debug mode. You can set a breakpoint by double-clicking in the margin, to the left of the line number as shown in the figure on the right. A blue circle will be shown for each breakpoint.
b. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\00_Eclipse\a3.jpg]Add a breakpoint at the line where the array is created in EngineerTest (the figure shows EngineerDriver instead of EngineerTest as yours will).

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c3'.jpg]Run the debugger. Choose Run, Debug (or press F11) and answer “Yes” to the resulting dialog.

d. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c4.jpg]Read (no action required) – Note the following:
· The windows displayed have changed because now you are in the Debug perspective as indicated in the upper right corner of your screen (see figure on right. Yours will probably just show the symbol, and not the word, “Debug”). When we end debugging (later), we will want to go back and choose the Java perspective to the left of Debug.
· [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c5.jpg]The green highlight (as shown on the right) indicates that the code execution has stopped here. The highlighted line has not been executed. When execution resumes, it will be the next line to execute.

e. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c6.jpg]Choose: Run, Step Over twice (or press F6 twice).
f. Hover your mouse over the hours variable (as shown on the right) and you will see the values in the array displayed.

g. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c7.jpg]Find the Variables window on the right of your screen and expand the nodes shown in the figure on the right. The Variables window shows all variables that are in scope and their corresponding values. See figure on right.
Note the following:
· hours is a local variable declared in main.
· e is a local variable declared in main. It refers to the Engineer object that we created on the preceding line.
· e has instance variables, hours and name. The constructor in the preceding line took the arguments and assigned them to the instance variables. Look back at the Engineer class’s constructor above.

h. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c9.jpg]Choose: Run, Step Over twice (or press F6 twice). Execution should be stopped at the last line of code.

i. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\c8.jpg]Inspect the values for wages and msg in Variables window (you may need to collapse the nodes we expanded in the previous step). See figure on right.

j. Choose: Run, Resume (or F8) to finish the code execution.

13. [image:]The debugger has changed since I first wrote these tutorials. Below, I will have you step into the constructor. Unfortunately, that cannot be done on the first invocation of the constructor because the class is not in memory yet. A simple fix, which should be saved in your workspace is to do the following:

a. Choose: Window, Preferences, Java, Debug, Step Filtering
b. Check (at the top): Use Step Filters
c. Uncheck (at the bottom of the list): java.lang.ClassLoader
d. Choose: Apply and Close

14. Next, we will run the debugger again to illustrate some other features of the debugger. Do the following
a. Run the debugger: choose Run, Debug (or press F11).
b. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d1.jpg]Choose: Run, Step Over (or press F6). You should be on the Engineer constructor (which hasn’t executed yet) as shown on the right.
Note:
· The last time we ran the debugger we stepped over the line we are currently one (the constructor). Below, we will step into the constructor and then step through the code there. When you step over a method call (or constructor), the method executes completely and we proceed to the next line.
· When you step into a method you can step through the code in that method and when the method is complete, the debugger returns to the line of code that called the method.
c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d2.jpg]Choose: Run, Step Into (F5). Notice that we have stepped into the Employee constructor as shown on the right.

d. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d3.jpg]Inspect the Variables window and note the items indicated in the figure on the right.
Note:
· this represents is Engineer object that we are creating.
· The instance variables have the value null because the code hasn’t executed yet to assign them the values of the parameters.
· The parameter values are shown.

e. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d4.jpg]Press F5 (or F6) three times. Execution should be stopped on closing brace in the constructor.

f. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d5.jpg]Inspect the Variables window and note that the instance variables are now initialized.

g. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d1.jpg]Press F5 (or F6) and execution should be returned to main.

h. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d6.jpg]Press F5 (or F6) and execution should be stopped on the call to getWages.

i. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d7.jpg]Choose: Run, Step Into (F5) to enter the method. Execution should be stopped on the first line in the getWages method.

j. Press F5 six times, you will be going through the loop. As you do this watch the totalHours (variable is name wages in the figure below) variable in the Variables window as its value gets larger each time a value is added.

k. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d8.jpg]Suppose you want to run the rest of the code in the loop without having to step through it. Do the following:

i. Put cursor on line just outside loop. The line will be highlighted light-blue as shown on the right.

ii. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\d9.jpg]Choose: Run, Run to line (Ctrl+R). Execution should have advanced to that line.

l. Press F5 (or F6) two (or may need three) times and execution should be returned to main.

m. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e1.jpg]Stop debugging by choosing: Run, Terminate (or press the red square on the Toolbar).

n. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e2.jpg]Debugging will have ended but you will still be in the Debug perspective. Return to the Java perspective by pressing the Java button in the upper right of your screen. (Your display will probably not show the “Java” text on the button, only the symbol. If you hover over it, it will say, “Java”).

o. Close the open files: Engineer and EngineerTest.

15. Debugging Summary:

	Menu
	Description
	Short Cut(s)

	Run, Debug
	Start debugging
	Green arrow or F11

	Run, Terminate
	Stop debugging
	Red Square or Ctrl+F2

	Run, Step Into
	Step into a method
	F5

	Run, Step Over
	Step over a method
	F6

	Run, Run to Line
	Run to a selected line
	Ctrl+R

	Run, Resume
	Continue running to next breakpoint
	F8

	Run, Remove all Breakpoints
	Clear all the breakpoints
	

[bookmark: _Toc166936587]Auto-Generate Code
In this stage we will see how Eclipse can automatically generate certain code for us. For example, constructors, getters and setters, toString.
16. Do the following:
a. Create a package named prob3.
b. Add a class named Employee (main will not be needed here, so you don’t have to check that)
c. Add the following instance variable:
private String name;
17. Generate getters and setters – Do the following:
a. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a14.jpg]Click the name variable and it should highlight.

b. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a13.jpg]Right-click and choose: Source, Generate Getters and Setters…

 We will learn what getters and setters are in class.

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a15.jpg]Read the resulting dialog carefully to see the different options. Especially the Insertion Point. It can put the generated code in a poor location by default, so it can be useful to select where you want to add it.

At this point don’t change anything and then choose: Generate.

d. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a16.jpg]Verify that the getName and setName methods are present.

18. Generate a constructor – Do the following:
a. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e3.jpg]Right-click anywhere in the code window and choose: Source, Generate Constructor using Fields…
b. Choose: Generate
c. The constructor should be shown in the code window (shown in the figure on the right). We will learn what the super() line of code is in another chapter. It can be deleted, but fine to leave it.
19. Generate toString – Do the following:
a. Right-click anywhere in the code window and choose: Source, Generate toString()…
 We will learn what toString is in class.
b. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a17.jpg]Read the dialog (partially shown on the right) carefully to see the different options. Note that you can choose which fields appear in the toString, among other options. Do the following:
i. Select the Insertion Point: “After ‘setName(String)’
ii. Choose: Generate

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a18.jpg]The toString method should be inserted into the code as shown on the right. Eclipse adds the @Override annotation. We will learn what this means in another chapter. It is not required, but a best-practice, so leave it.

[bookmark: _Toc166936588]Commenting Out Code
20. Comment out a Block of Code – Do the following:

Note

a. Read (no action required) – This is a very useful technique for quickly commenting out a block of code and can be very useful when debugging. Make sure you can do this!
b. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e4.jpg]Select the getName method (I’ve moved it to the top of the class so that the screen shots will be smaller).

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e5.jpg]Choose: Source, Toggle Comment (or press Ctrl+/). Line comments have been added as shown on the right.

d. Choose: Source, Toggle Comment again (or press Ctrl+/) and the line comments have been removed.

e. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e6.jpg]Make sure the method is still selected and choose: Source, Add Block Comment (or press Ctrl+Shift+/) and a block comment is created.

f. Choose: Source, Remove Block Comment (or press Ctrl+Shift+\) and the block comment is removed.

[bookmark: _Toc166936589]Refactoring: Renaming Variables, Methods, Classes, Packages
21. Create a class named: EmployeeTest in the prob3 folder and copy this code in (leaving the package statement at the top)
public class EmployeeTest {
	public static void main(String[] args) {
		String name = "Xavier";
		Employee e = new Employee(name);
		System.out.println(e);
	}
}
Verify that the program runs.
22. Next, we are going to change the name of the name instance variable in the Employee class. Do the following:
a. Open Employee.java if necessary and select the name instance variable (the declaration at the top, not in the code where it is used)
b. Choose: Refactor, Rename (or Alt+Shift+R)
c. A message will appear, “Press Enter to refactor”. Type: “firstName” and Enter and you will see that it changes all occurrences of name to firstName.
 Note: This doesn’t (of course) change the name of the setName parameter, nor the name of the method itself.
d. We can change the name of a method, class, or package using the exact same technique.
23. Next, we are going to change the name of the Employee class. You can do this in the code window or you can do it in the Package Explorer. I usually do it in the Package Explorer. Do the following:
a. [image:]Save and close the files that are open (Employee and maybe EmployeeTest).
b. Select Employee.java (single-click) in the Package Explorer.
c. Choose: Refactor, Rename (or Alt+Shift+R).
d. A dialog appears, change the name to: HourlyEmployee
e. Choose: Finish

Note:
· It changed the name of the file to HourlyEmployee.java.
· Inside the class, it changed the name of the class and the name of the constructor. Verify this now.
· Inside the EmployeeTest class, it changed Employee to HourlyEmployee. Verify this now.
24. (Read, no action required) Always use: Refactor, Rename (or Alt+Shift+R), to change the name of an instance variable, method, class, or package to ensure that your change correctly modifies all occurrences in any file in the package.

[bookmark: _Toc166936590]Copying Classes & Packages
In this stage we show how to copy classes and packages in Eclipse.
25. Read (no action required) – In homework assignments and labs, I may sometimes ask you to copy a class or package. We do this so that your work is incremental, i.e. make something, copy and rename it, and then make some additions to the copy. Or, when I am working, I will frequently copy my package to simply make a backup. There are three scenarios we consider here:
· Copy a class and rename it in the same package.
· Copy a class from one package to another (and possibly renaming it).
· Copy a package and rename it in the same project.
This is simple, but we need to point out a few things.
26. Copy a Class in the same Package – Do the following:
a. Save and close all files.
b. Select HourlyEmployee.java in the prob3 package in the Package Explorer.
c. Ctrl+c (or choose: Edit, Copy)
d. Select the prob3 package in the Package Explorer.
e. Ctrl+v (or choose: Edit, Paste).
f. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e7.jpg]In the resulting dialog, change the name to Worker and choose “OK.”

g. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e8.jpg]Open the Worker class and you should see that the name of the class has changed and the constructor name has changed also.

27. Copy a Class in a different Package – Do the following:
a. Select Engineer.java in the prob2 package in the Package Explorer.
b. Ctrl+c (or choose: Edit, Copy)
c. Select the prob3 package in the Package Explorer.
d. Ctrl+v (or choose: Edit, Paste).
e. Open Engineer.java in the prob3 package in the Package Explorer and verify that the package statement has been changed to prob3.
28. Copy a Package – Do the following:
a. Select prob3 package in the Package Explorer.
b. Ctrl+c (or choose: Edit, Copy)
c. Select the src folder in the Package Explorer.
d. Ctrl+v (or choose: Edit, Paste).
e. In the dialog that results, supply the name prob4 and choose “OK.”
f. Expand the prob4 package in the Package Explorer and open the files. Verify that these are the same classes as in prob3 except that the package statement at the top of each file shows prob4.
29. Read (no action required) – You can drag a Java file from your computer directly into Eclipse however, you’ll have to change/add the package statement at the top. In homeworks (and labs) I will sometimes supply you with a Java file (zipped). You will download, unzip, drag the file into Eclipse, add (or change) the package statement.
[bookmark: _Toc166936591]Resetting IntelliSense/Autocomplete
Read (no action required) – Sometimes, IntelliSense/autocomplete will stop working. Here is how you can fix it:
a. In Eclipse, choose: Windows, Preferences, Java, Editor, Content Assist, Advanced
b. Check these as show below: Java Non-Type Proposals, Java Proposals, Java Type Proposals
[image:]

c. Choose: Apply and Close
Note: when I do this, it works, but frequently, the suggestion list will have every suggestion listed twice. Not sure why! Perhaps experimenting with the checkboxes above would correct that.

[bookmark: _Toc166936592]Submitting your Work
All labs and homework will be submitted as described below, on Blazeview.
30. Prepare for archiving – Do the following
a. Make sure all your files are saved in Eclipse.
b. Although not necessary, I recommend closing Eclipse. Do that now.
31. Archiving your work for submission – Do the following:
a. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\e9.jpg]In File Explorer, display the contents of the src folder for the assignment you are submitting (e.g. lab01_...)
b. Select the contents of the src folder as shown in the figure on the right.
 Double-Check: Did you ONLY select the 4 prob folders? Not the src nor the lab02_lastname folder.
c. Right-click the selected folders and choose: Send to, Compressed (zipped) folder.
d. Provide the name:
assignmentTypeNumber_lastName
For example: lab1_gibson or hw1_gibson
This will create a zip file with name: lab1_gibson.zip.
32. (Read, no action required) I will take points off an assignment if you have not done exactly what I specified above. In other words, your zip file must contain only: the CONTENTS of the src folder.
33. Test your zip file – Do the following:
a. Copy your zip file from above to some new location (anywhere, but not in your workspace).
b. Right-click the file and choose: Extract All… and then choose: OK.
c. Verify that the proper folders and files are present.
[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\01\a20.jpg]
34. Upload your zip file to Blazeview to the proper dropbox (in this case, Lab 02)
You are done!

	Appendix
There is nothing currently in the Appendix.
[bookmark: _Toc166936593]n/a
.
4

image1.jpeg
eeeeeeeee

image2.jpeg
Select a workspace ‘—

Eclipse SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: Ches1302_code - Browse...

image3.jpeg
Close

/

< Java - Eclipse SDK
Eile Edit Mavigate firch Project Run Wir

“E;. @Welcome bt

Qj

Welcome to

image4.png
© New Project o X

Select a wizard p—
=

Create a Java project S

Wizards:

type filter text

> & General
> & Gradle
v & Java

£ Java Project

Java Project from Existing Ant Buildfile
> = Maven

@ <Back Next > Eil

image5.jpeg
[% Package Explorer 33 = 0
BES -~
4 | 1ab01_gibsond| «—— Project
2 src
[mh JRE System Library [JavaSE-1.8]

image6.png
© New Java Package

Java Package

Create anew Java package.

Creates folders corresponding to packages.

Source folder: 12b01_gibson/src Browse...
Name: prob1|
[Create package-info.java

Finish Cancel

image7.jpeg
[% Package Explorer 52

4 (& 1ab01_gibsond <—— Project

4 [src
tH probl; <—— Package
> @ JRE System Library [JavaSE-1.8]

image8.jpeg
© New Java Class

Java Class.
e Q

Sourcefolder: hwl_gibsond/src
Package: probl
[CJEnclosing type:
Name: Employee /
Modifiers: ©public Opackage privste p
[abstract [final static
Superclass: javalang Object
Interfaces: .
Which method stubs wjyfl you ke to create?
public static void main(String[] args}
] Constructors from superclass
7] Inherited abstract methods

N

image9.jpeg
[Package Explorer &3

4 |@ lab01_gibsond| «<—— Project
4 (& sic
4 B} probl <—— Package
4 [J] Employeejava <—— Javafile
4 @ Employee <—— Class
& main(String[]) : void <— main
;> mh JRE System Library [JavaSE-1.3] method

image10.jpeg
[7] *Employeejava &3

1 package probl; <—— package statement
2

- 3 public class Employee { «—— Class

public static void main(String[] args) {
// TODO Auto-generated method stub

image11.jpeg
4 || cs1302_code o
b i P | Employee.java
(‘4). 1ab01_gibsond
) .settings Source file
4 || bin L
i probl < Package folder
" m - (class files)
| probl < Package folder
— (source files)

Project

Workspace

image12.jpeg
1

[5) “Employecjova 52
package probi;

1
2
5 public class Employee {
4
s

a pivate String nane;

X

image13.jpeg
public class Employee {

Multiple markers at this line 3

- Syntax error on token "pivate”, private expected
- pivate cannot be resolved to a type E

TF T0Y Rt moncrmadod wmodthed o4

image14.jpeg
ctor Navigate Search Project Run Window Help

<\ 1 package probl;

2
l 5 public class Enployee {
K

s private String name;
Employ 6

75 public static void main(String[] args) {
| 13 System.out.println("Hello World");
ceTest & N

o 3
aylie | /

blems @ Javadoc [Declarstion ') Console 53
<terminated> Employee [Java Application] C:\Program Files\Javaljrel 8.0_20

Hello orld @

image15.jpeg
T R

Mavigate Search

B> 3

Stop debugging

image16.jpeg
3 public class EngineerDriver

4= public static void main
@5 double[] hours = {8
T 6 Engineer e = new En

Breakpoint

image17.jpeg
@ This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

image18.jpeg
Debug perspective

image19.jpeg
4 public class EngineerDriver {

7 Engineer e = new Engineer("W
8 double wages = e.getiWlages(2@

9 Strine mse = e.petName(+
Code execution
has stopped here

image20.jpeg
Hover mouse over

4 public class EngineerDriyer {

50 public static voig/main(String[] args
double[] hours = {8.0,8.0,8.0,8.€

7 4 Engineer = R

g | double wa| * Bahours= ('d_lf}/ Values in array

g String ms a [0]=80 are displayed

10 System.o a [1]=80

11 } a [2]=80

12 a [3]=80

13} Code execution -
14 has stopped here D15 Dadh JHIh Dth T

image21.jpeg
(x)= Variables 33 | 9 Breakpoints

MName

@ args
Local variable ———&=hours

A

L300 0 N

Local variable ——s—3¢

Instance variable ————~8
in Engineer class

Instance variable
in Engineer class ——>~m

[0]
1
12]
131
4
[5]
[6]

hours
a [0]
A [1]
a [2]
a [3]
a [4]
a [5]
a [6]

name

Value

String[0] (id=16)
(id=19)

8.0

8.0

8.0

8.0

8.0

0.0

0.0

Engineer (id=21)
(id=19)

8.0

8.0

8.0

8.0

8.0

0.0

0.0

"Wilma" (id=24)

image22.jpeg
el] HEEEEE & LYWW aWeligWewaw:
Engineer e = new Engineer("Wilma”, |
double wages = e.getWages(20.0);

Strinli msE = e.ietuame“ + " made §

}

= ® W

image23.jpeg
(x)= Variables 37 | ®g Breakpoints

MName Value

@ args String[0] (id=16)
5 © hours (id=19)
> 0 e Engineer (id=21)

@ (wages 800.0

r @ (msg "Wilma made SSDU‘.UD(id:BU)

image24.png
© Preferences o X
type filter text Step Filtering GvDv i
ie"e’”' Step filters are applied when the ‘Use Step Filters' toggle is activated. ~
t
" se Step Filters
Grede Defined step flters
Help ined step filters:
Install/Update [# com.ibm.* Add Filter...
v Java [& com.sun. T
Appearance [javar
Build Path [8 javax* Add Packages..
Code Coverage. [# jrockit. Remove
Code Style # org.eclipsejdtlaunching.intemal *
Compiler O #orgomg*]
v Debug [& sun*
Detail Form; [8 sunw Deselect All
Heap Walkir [1© javalang ClassLoader
Logical Stru
Primitive Dit
StepFilterin | [JFilter synthetic methods (requires VM support)
Editor [JFilter static initializers
Installec JREs [Filter constructors
Junit
N . [JFilter simple getters
< v
[OX Y% Apply and Close Cancel

image25.jpeg
4 public class EngineerDriver {

5 public static void main(St:
6 double[] hours = {8.8,{
7 Engineer e = new Engin¢

3 double wages = e.getlWa:

image26.jpeg
[J] Engineerjava &2 ‘ [J] EngineerDriverjava

3 public class Engineer {
4
private String name;

; private double hours[];

9 this.name = name;
L] this.hours = hours;

5
6
7

image27.jpeg
(%)= Variables 3 | 9g Breakpoints

Engineer object MName
being created B S =
4 @ this

Instance m hours
variables :: e
Constructori; @ name
parameters @ hours

a [0]

a [1]

rv

Value
Engineer (i
null

null
"Wilma" {id
(id=19)

80

8.0

on

image28.jpeg
3 public class Engineer
4

5 private String nan
private double ho

= public Engineer (St

this.name = nz
10 this.hours = F
» 11

0o o

image29.jpeg
(x)= Variables i3 @

Name Value
Expandto 4 @ this Engineer (id=22)

see value Initialized
[@ name "Wilma" (1d=23)

@ name "Wilma" (id=23)

image30.jpeg
public class EngineerDriver {
public static void main(String[] arg:
double[] hours = {§.8,8.0,8.8,8.1
Engineer e = new Engineer(“Wilma
double wages = e.getWages(20.9);
String msg = e.getName() + " mad:

SN AT e DS S,

image31.jpeg
public double getWages(doubl
double wages = 0.0;
for(double h : hours) {
wages += h;

image32.jpeg
public double getWages(doubl
double wages = 9.8;

furidmlble h : hours) {
-

| wages *= payRate;

image33.jpeg
public double getWages
double wages = 8.0
for(double h : hou
wages += h;

h

return wages;

image34.jpeg
|
| @) e oo

e T

image35.jpeg
private String m;

X

image36.jpeg
Paste

Quick Fix

Source
Rehdnr\
Local History
References
Declarations

Add to Snippets..
Convert

Sort

Replace With

Find Bugs
Run As
Debug As

Ctrl+V

Ctri+1

AltShift+5 » |
Alt+Shift+T »

»

>

»

Toggle Comment
Remove Block Comment
Generate Element Comment
Correct Indentation

Format

Format Element

Add Import
Organize Imports

Sort Members...

Clean Up...
Override/Implement Methods.

Generate Getters and Setters...

FEERETI R T T

Ctrl-
Alt-

Ctrl-

Ctrl+
Ctrl+

image37.jpeg
Select getters and setters to create:

name

setName(String)

Allow setters for final fields (remove ‘fil

Insertion point:

P

image38.jpeg
private String name;
public String getName() {

return name;
}

public void setName(String name) {
this.name = name;
}

image39.jpeg
public class Employee {

Constructor

private String name;
public Employeefstr‘{gname) {

super();
this.name = name;

image40.jpeg
2 Generate toString()

Select fields and methods to include ir

3

4 @ Fields|])
o name
b [[] @ Methods
» [C] ® Inherited methods

image41.jpeg
@verride K

public String toString() {
return "Employee [name=" + name + “]";
}

image42.jpeg
public class Employee {
private String name;

public String getName() {

return name;

image43.jpeg
public class Employee {
private String name;

public String getName() {

return name;

!

image44.jpeg
public class Employee {
private String name;

public String getName() {
return name;

image45.png
New name:

© Rename Compilation Unit o X

HourlyEmployee

Update references
[J Update similarly named variables and methods Configure.

[J Update textual occurrences in comments and strings (forces preview)
[Update fully qualified names in non-Java text files (forces preview)
File name patterns; | *

The pattemns are separated by commas (* = any string, ? = any character)

<Back Next > Einish Cancel

image46.jpeg
2 Name Conflict

Enter a new name for 'Employee’:

Worker <——

image47.jpeg
package prob3;

public class Worker {
private String name;

public Worker(String name)

super();
this.name = name;

image48.png
Preferences

v Java
Appearance
Build Path
Code Coverage
Code Style
Compiler
Debug
v Editor
Code Minings
v Content Assist
Advanced
Favorites
Folding
Hovers
Mark Occurrence
Save Actions
Syntax Coloring
Templates
Typing
Installed JREs
Junit
Properties Files Edit
JavaFX
Language Servers
LDef
Maven
Mwe2
NLSDs!
ObjectAid
Oomph
Plug-in Development
RTask
Run/Debug
Terminal
TextMate
Validation
Version Control (Team)
XML
XML (Wild Web Develc
Xtend
Xtext

Advanced vEol

Configure the behavior of the content assist (Ctrl+Spa

Select the proposal kinds contained in the ‘default’ co
Key Binding

Default Proposal Kinds
[I Chain Template Proposals

Java Non-Type Proposals

[[] = Java Postfix Template Proposals
22 Java Proposals

9 Java Type Proposals

[SWT Template Proposals
Template Proposals

[Ja Word Proposals

Individual key bindings can be assigned to each propc

Content assist cycling: Select the proposal kinds that a
invoking content assist:

Template Proposals
[SWT Template Proposals

2 Java Non-Type Proposals

1% Chain Template Proposals

[[]% Java Type Proposals

[Ja Word Proposals

[J2¢Java Proposals

[[] = Java Postfix Template Proposals

O

Timeout for fetching a parameter name from attachec

Enable non-blocking completion (does not affect c

A\ This setting will be ignored because the folloy
¥org.eclipse fuidejdtuiid2

[OF T4 YO

Apply and Close

image49.jpeg
) cs1202_code
i .metadata
) 1ab01_gibsond

Display contents m .settings
of src folder \i i
B src

m probl

B prob2

m prob3

B probd

Name

o probl
m prob2
‘ B prob3

i probd

T

Select contents

image50.jpeg
Folder should have one subfolder
for each problem for the assignment

Each subfolder should have
the Java files

B 1abl_gibsond /[~ Name % ‘
m probl

m prob2
B

| Employee.java
| EmployeeTester.java

