CS 1302 – HW 8
Maps & Comparators

Contents
1	Overview	1
2	Requirements	1
3	Extra Credit	2
4	Step-by-Step	2
5	Rubric	4
6	Submission	4
Appendix 1	n/a	4

[bookmark: _Toc184721944]Overview
This homework has 1 problem which deals with maps and comparators. You will refactor the MartianManager class from HW 5 to utilize maps as the primary data structure and add a few methods and comparators.
To get started, do the following:
1. Create a Java Project in Eclipse with the name: hw8_lastName
2. Drag your prob2 folder from HW 5 to the src node in Eclipse for HW 8.
3. Rename prob2 to prob1 by doing the following:
a. Select the prob2 folder in Eclipse for HW 8
b. Choose: Refactor, Rename (or Alt-Shift-R)
c. Type in the name: prob1
d. Choose: OK
[bookmark: _Toc184721945]Requirements
These are the requirements that your code must fulfill. You can use these to complete the homework; or, you can go to the next section for step-by-step directions.
1. In the MartianManager class, replace the martians and teleporters lists with HashMaps storing martians and teleporters, respectively, using the id as the key in both cases. Almost every method in the class will need to be changed to work with the HashMaps. Before beginning these updates, note the following:
a. The battle method code will need to be changed; however, there is no change to the signature of the battle method, it continues to return ArrayList<Martian>.
b. Remove getMartianAt(int i) it no longer has meaning.
c. Rename getMartianWithId(int id) to getMartian(int id). The purpose of the method remains the same: return the martian with id if it exists. The preferred way to rename is to do a Refactor, Rename as you did in Section 1 above, changing the prob2 package to prob1.
d. Rename getTeleporterAt(int i) to getTeleporter(int id). This method now will return the teleporter with id if it exists. Thus, it is almost identical to getMartian above.
e. Remove removeMartianAt(int i) it no longer has meaning.
f. Rename removeMartianWithId(int id) to removeMartian(int id). The purpose of the method remains the same: return the teleporter with id if it exists.
2. Write a MartianIdComparator that will allow martians to be sorted on id.
3. Write a MartianVolumeComparator that will allow martians to be sorted on volume, then id. In other words, if two martians have the same volume, then compare on id.
4. The getSortedMartians method should be modified:
a. The method now accepts a string, sortType that defines what type of sort to perform. Valid values are "ID" and "VOLUME". A new, appropriately sorted list should be returned based on the sortType.
/***
 * Returns a sorted list of martians using the Comparator specified by sortType.
 * @param sortType The type of sort to do. Valid values are "ID" and "VOLUME".
 * @return Sorted list of Martians either by ID or VOLUME.
 */
public ArrayList<Martian> getSortedMartians(String sortType) {
5. Add a method, increaseTeleporterVolume that increases the volume by 1 for all teleporters whose id is less than idThreshold.
public void increaseTeleporterVolume(int idThreshold) {
	...
}
6. Modify MartianManagerTest as needed so that all tests run.
7. Add these tests:
· testGetSortedMartians_ID – maybe 5-6 total, of which 2 have the same ID.
· testGetSortedMartians_VOLUME – maybe 5-6 total, of which 2 have the same Volume.
· testIncreaseTeleporterVolume – maybe 5 teleporters and 3 get increased
[bookmark: _Toc184721946]Extra Credit
Add these classes to test the comparators:
1. MartianIdComparatorTest – Write test methods to test the compare method in the MartianIdComparator under various conditions. There should be at least 5 test methods in order to test all the conditions.
2. MartianVolumeComparatorTest – Write test methods to test the compare method in the MartianVolumeComparator under various conditions. There should be at least 5 test methods in order to test all the conditions.
[bookmark: _Step-by-Step][bookmark: _Toc184721947]Step-by-Step
1. Replace the martians and teleporters lists with HashMap storing martians and teleporters, respectively, using the id as the key in both cases.
2. Remove getMartianAt(int i); it no longer has meaning.
3. Comment out all methods except: getNumMartians and getNumTeleporters by selecting the methods and the pressing: Ctrl+/. These two methods should not require any changes and thus, should compile.
4. Uncomment, toString by selecting the method and pressing: Ctrl+/. Then make the required changes.
Hint: you want to loop over the values in the martians (teleporters) map.
5. Comment out all your test methods in MartianManagerTest except, one for testToString method. Then, make any needed changes, and run the test.
6. Uncomment, addMartian in MartianManager by selecting the method and pressing: Ctrl+/. Then make the required changes.
Hint: You need the id to add the teleporter to the teleporters map. However, when you cast the incoming martian to a teleporter, the teleporter doesn’t have access to the id, the only thing it can do is: teleport. Thus, you need to get the id from the incoming martian.
7. Uncomment (select, then Ctrl+/) on of your testAddMartian methods (you should have several) in MartianManagerTest. Then, make any needed changes to testAddMartian, and then run test.
Note: Depending on how you wrote the test originally, you might not be able to modify the test until you also update (next) getMartian in MartianManager.
8. Uncomment (select, then Ctrl+/) getMartianWithId(int id). Rename the method to getMartian by selecting the method name, and then choosing: Refactor, Rename; type in “getMartian” and OK. The purpose of the method remains the same: return the martian with id if it exists.
Hint: use the containsKey method to see if the id exists.
9. Uncomment the test method(s), testGetMartian… in MartianManagerTest and modify as needed. Then, run the tests.
10. Remove the getMartianAt method. It no longer makes sense because there is no index with a map. Remove corresponding test methods in MartianManagerTest.
11. Uncomment (select, then Ctrl+/) getTeleporterAt(int i). Rename the method to getTeleporter by selecting the method name, and then choosing: Refactor, Rename; type in “getTeleporter” and OK. Next, change the parameter name, i to id. This method now will return the teleporter with the incoming id. Thus, it is almost identical to getMartian above.
12. Uncomment tests for getTeleporter in MartianManagerTest, modify the tests, and run.
13. Remove removeMartianAt(int i) it no longer has meaning.
14. Rename removeMartianWithId(int id) to removeMartian(int id). The purpose of the method remains the same: return the teleporter with id if it exists.
15. Uncomment tests for removeTeleporter in MartianManagerTest, modify the tests, and run.
16. Continue this process with the rest of the methods. Notes:
· The battle method will continue to accept and return an ArrayList of Martian.
· The getSortedMartians method will change as described below (so save it for last).
17. Write a MartianIdComparator that will allow martians to be sorted on id. They can actually already be sorted on id because Martian implements Comparable which compares martians on id; however, you must write (and use later) the comparator.
18. Write a MartianVolumeComparator that will allow martians to be sorted on volume, then id. In other words, if two martians have the same volume, then compare on id.
19. The getSortedMartians method should be modified:
b. The method now accepts a string that defines what type of sort to perform. Valid values are "ID" and "VOLUME"
/***
 * Returns a sorted list of martians using the Comparator specified by sortType.
 * @param sortType The type of sort to do. Valid values are "ID" and "VOLUME".
 * @return Sorted list of Martians either by ID or VOLUME.
 */
public ArrayList<Martian> getSortedMartians(String sortType) {

20. Add a method, increaseTeleporterVolume that increases the volume by 1 for all teleporters whose id is less than idThreshold.
public void increaseTeleporterVolume(int idThreshold) {
	...
}
21. Modify MartianManagerTest as needed so that all tests run. This involves just a little work, most change a few method names. All the test methods from HW 5 should be implemented.
22. Add these tests:
· testGetSortedMartians_ID – maybe 5-6 martians, of which 2 have the same ID.
· testGetSortedMartians_VOLUME – maybe 5-6 martians, of which 2 have the same Volume.
· testIncreaseTeleporterVolume – maybe 5 teleporters and 3 get increased
[bookmark: _Toc184721948]Rubric
	Criteria
	Description
	Points

	1
	Automated Tests
	80

	2
	MartianManagerTest updated & complete
	10

	3
	3 Test Methods added
	10

	
	
	

	
	Extra Credit
	10

	
	Total
	110

[bookmark: _Toc184721949]Submission
1. Zip your prob1 folder (also containing all test files) into a file name: hw8_yourLastName.zip.
2. Submit on Blazeview in the the HW 8 drop box.
Appendix
[bookmark: _Toc184721950]n/a
21

