[bookmark: _Hlk128052582]CS 1302 – HW 6
Text Files

Contents
1	Problem 1 – Martian Manager App, Ver 2	1
1.1	Overview	1
1.2	Text File Format	3
1.3	Requirement: writeMartiansFile Method	3
1.4	Requirement: readMartiansFile Method	3
1.5	Requirement: Video	4
2	Problem 2	5
2.1	Overview	5
2.2	Details	5
2.3	Suggested Steps	6
3	Submission Requirements	7

[bookmark: _Toc192340773]Problem 1 – Martian Manager App, Ver 2
[bookmark: _Toc192340774]Overview
(60 Points) You will add a component (highlighted in red in the figure below) to the Martian Manager App to allow the user to read a text file of marians, populating the app. The user can also write the martians in memory to disk.
[image:]

You have been provided code that produces:
[image:]
When “Read-Basic” is pressed, the standard File Open Dialog is displayed where the user can choose a file:
[image:]
When a file is choosen, the code displays:
[image:]
When “Write” is pressed, similarly, a File Output Dialog is displayed and a sample message is displayed. Thus, you will do the following:
1. Create a copy of your Martian Manager App, ver 1. This will be your ver 2.
2. Integrate the code provided into your code
3. Write two methods: readMartiansFile and writeMartiansFile (stubs provided).
[bookmark: _Text_File_Format_1]

[bookmark: _Toc192340775]Text File Format
The format for the martians text file is shown below (left column). Thus, a GreenMartian is represented with a ‘G’ followed by the Id and optionally, the Volume. A RedMartian is represented by a ‘R’ followed by the Id, optionally a Volume, and aTenacity. An example file is shown below (right column). So, we can see that each Martian is on a separate line. For example, the first line in the example is a GreenMartian with id=3 and volume=5. The second line is a RedMartian with id=1, volume=4, and tenacity=2.
	Format, either of these is valid
	Key
	Example

	G I [V]
R I [V] T

	
	Code
	Type
	Meaning

	G
	Character
	Green Martian

	R
	Character
	Red Martian

	I
	Integer
	Id

	V
	Integer
	Volume

	T
	Integer
	Tenacity

	G 3 5
R 1 4 2
G 5
R 9 4
G 7 7
R 2 9 3
G 8 2
G 4 5

[bookmark: _Toc192340776]Requirement: writeMartiansFile Method
The sample code provides this method stub:
protected void writeMartiansFile(File file) throws FileNotFoundException {
Write this method. This method should loop through the martians in the MartianManager and write the martians to the file object that is passed as an argument, using the format described above; however, the volume should always be present. In other words, these are the valid formats for writing:
G I V
R I V T
The output after a write should show a message like this, which shows the file name and the number of martians writen:
File: out1.txt, Num Martians written:7
Hint: What MartianManager methods will you need to loop over the Martians? Reference the Javadoc for HW 5 (where the MartianManager and related classes were originally written).
[bookmark: _Requirement:_readMartiansFile_Metho][bookmark: _Toc192340777]Requirement: readMartiansFile Method
1. The sample code provides this method stub:
protected void readMartiansFile(File file) throws FileNotFoundException {
This method accepts a file object, reads the martians in the file, add the martians to the martian manager (there may already be martians in there, just add to it), and display the added martians along with some statistics.
2. Note the following:
a. When you read martian data, you use it to create either a RedMartian or a GreenMartian. Note that there are 4 cases (which correspond with the 4 constructors). Then, you will attempt to add the martian to the MartianManager. The MartianManager’s addMartian method will only add a martian, if there doesn’t already exist a martian with the same id. The addMartian method returns true if the martian was added and false otherwise. Your code will keep track of how many martians were successfully added and how many were not added because they already exist.
b. As lines are being read, martians created, and attempting to add them to the MartianManager, your code should keep track of:
i. numLinesRead – the total number of lines read (valid or ill-formed)
ii. numSuccessfullyAdded – the total number of martians successfully added to the MartianManager
iii. numDuplicates – the total number of martians that could not be added to the MartianManager because they are duplicates, i.e. already exist.
Note: numLinesRead = numSuccessfullyAdded + numDuplicates
3. The output should be similar to what is shown in an example below. In this example, the duplicates
	Sample File
	Output

	G 3 5
R 1 4 2
R 9 3 4
G 7 7
R 9 9 3
G 8 2
G 7 5
	Martian Read Report
 File: inMartiansBasicDups.txt
 Lines read: 7, Added: 5, Duplicates: 2
added: Green Martian - id=3, vol=5
added: Red Martian - id=1, vol=4, ten=2
added: Red Martian - id=9, vol=3, ten=4
added: Green Martian - id=7, vol=7
***not added, id=9 already exists
added: Green Martian - id=8, vol=2
***not added, id=7 already exists

4. You have been provided 4 test input files: inMartians1.txt, inMartians2.txt, inMartiansBasicDups.txt (has a few duplicates), and inMartiansBasicNoDups.txt.
[bookmark: _Test_Cases_–][bookmark: _Summary][bookmark: _Hints][bookmark: _Test_Cases_–_1][bookmark: _Toc192340778]Requirement: Video
Create a video in Blazeview demoing:
1. Launch the app and immediately read in: inMartians2.txt.
2. Use “Display” to display “All” the martians.
3. Add two martians manually.
4. Use “Display” to display “All” the martians (there should be 2 more).
5. Write the martians to a file, out1.txt.
6. Open the output text file just created and display the contents.
7. Press, “Reset All”
8. Read in the output file (out1.txt) you just created.

[bookmark: _Toc192340779]Problem 2
[bookmark: _Toc192340780]Overview
(40 points) For this problem you will read a file of numbers adding them as you go, but skipping some of the number as indicated by a code in the file.
In the provided hw06_prob2.zip, you will find a prob2 folders, a NumberAdder class, and some sample test files. In NumberAdder, you will write the getSum method, which returns the sum of the integers read from a file. However, some numbers are skipped. When you encounter a line whose first character is ‘s’, then an integer will follow it. The integer tells you how many of the next consecutive numbers should be skipped. For Example 1 below, the yellow numbers should be added to produce 60, skipping the values as indicated. As shown in Example 3, a skip of zero doesn’t skip anything, effectively ignoring the skip. Example 4 shows a skip beyond the length of the file which should just skip to the end of the file, ignoring the invalid skips. Finaly, Example 5 shows overlapping (or embedded) skips. The embedded skip, s5, is effectively ignored, meaning it is treated as any other skipped value.
	Example 1 – Sum=60
	Example 2 – Sum=90
	Example 3 – Sum=10
	Example 5 – Sum=10

	[image: E:\Data-Classes\CS 1302 - Programming 2\homework\Fall, 2015\hw7\a.jpg]
	s5
2
43
3
6
9
12
4
56
s2
10
4
8
s2
1
5
s2
4
2
10
	2
3
s0
4
1

	2
3
s3
4
s5
2
4
1

	
	
	Example 4 – Sum=5
	

	
	
	2
3
s7
4
1

	

[bookmark: _Toc192340781]Details
Drag the prob2 package into project where you have Martian Manager App, ver 2.
In the prob2 package you will find a NumberAdder class as shown below. Write the getSum method (stub provided). This is also the test class as main calls getSum 10 times, passing it a different text file each time.
public class NumberAdder {
	private static final String IN_FILE_PATH = "src/prob2/";
	// I have supplied test files: t1.txt, t2.txt, ..., t10.txt
	// You will need to verify the expected output by hand to ensure
	// that your code gives the correct value.
	static String[] inFileNames = {"t1.txt", "t2.txt", "t3.txt", "t4.txt", "t5.txt",
			"t6.txt", "t7.txt", "t8.txt", "t9.txt", "t10.txt"};
	
	public static void main(String[] args) throws FileNotFoundException {
		// Comment out most of these as you test/debug.
		File file;
		file = new File(IN_FILE_PATH + inFileNames[0]);
		System.out.println("Sum=" + getSum(file));
		file = new File(IN_FILE_PATH + inFileNames[1]);
		System.out.println("Sum=" + getSum(file));
		file = new File(IN_FILE_PATH + inFileNames[2]);
		...
	}
	/**
	 * YOU WRITE THIS METHOD
	 */
	public static int getSum(File file) {
		return Integer.MAX_VALUE;
	}
	...
}
[bookmark: _Toc192340782]Suggested Steps
If you need help getting started, I’d use baby steps:
1. Create a simpler text file to start with:
0. Write a text file named: test.txt with these values: 1 2 a 3 4 5
0. Comment out all code in main.
0. Add these lines to main:
File file;
file = new File(IN_FILE_PATH + test.txt);
System.out.println("Sum=" + getSum(file));
1. Write getSum so that it simply adds up all the numbers in the file. Thus, you need to read each token as a string, and then ask if it is an integer. If it is, add it. If it is not, then skip it. See Chapter 7, Section 8 to see how to determine if a string is an inteter.
1. Run, and verify that the output is 15. If not, debug and fix your code.
1. Modify test.txt so that the values are: 1 2 a b 3 c 4 5.
1. Run and verify that the output is 15. If not, debug and fix your code.
1. Add a skip to test.txt: 1 2 s2 3 4 5. Thus, the expected result is 8 once you modify getSum.
1. Modify getSum to detect and obey the skip:
6. When you detect that a token is not an integer, then you can assume it is a skip, i.e. the first character is an ‘s’. So, write code to strip off the strip length. See Chapter 1, Appendix 1.4 to see how to use the substring method.
6. Put an inner for loop (i.e. inside the while(scanner.hasNext()) loop) that goes from 0 to less than the strip length. Each time it should simply read the next token and do nothing with it.
6. Run and verify that the output is 8. If not, debug and fix your code.
1. Comment out the two lines in main and then uncomment the first test case:
File file;
file = new File(IN_FILE_PATH + inFileNames[0]);
System.out.println("Sum=" + getSum(file));
1. Run and verify the output. If incorrect, then debug and fix your code.
1. Repeat steps 8 and 9 with the second test case, then the third, etc.
[bookmark: _Toc167792968][bookmark: _Toc192340783]Submission Requirements
Checklist:
	
	Complete?
	Requirement

	1.
	
	Your application and prob2 folders are zipped into a file name: hw6_yourLastName.zip.
· See Lab 2, Stage 9 for exact instructions.
· Do not zip your workspace folder
· Do not zip your src folder.
· Do not zip just the java files
· Do zip just your application and prob2 folders

	2.
	
	Video complete

	3.
	
	Submit video and zip file in the hw 6 dropbox on Blazeview by the deadline.

21

image3.png
Open
1 | «src > mmexample2 v O | Search mmexample2 P
Organize >+ New folder - @ @
1 Paul A~ Name Date modified Ty
~- Backupt () # 3/8/2025 1:43 PM Te|

¥ probt # 3/7/2025 209 PM T
& Google Drive # 3/7/2025 209 PM T

T _hw-javafx 3/7/2025 209 PM T

§ Downloads v < I >
File name: || || TXT files (txt) =

Open Cancel

image4.png
1 Example-Read/Write

Write.

Read-Robust

Results

T just pretended to read the file:

: inMartians2.txt

image5.jpeg
52 —»Skip next 2
99 numbers

1 —»Skip next number

“n

image1.png
1 Martian Manager App, Ver 2 - Dave Gibson

- [m} X

Create | (@ Green () Red | Reset All

1d Volume Tenacity

Display | () Green

Teleport | destination

Red (@) All () Sorted

Write | Read-Robust

Results

Martian Read Report
File: inMartians2.txt
Lines read: 7, Adde

added: Green Martian - i

added: Red Martian - i

added: Red Martian - i

added: Green Martian

addad: Rad Martian - i

7, Duplicates: @
3, vol-5

image2.png
] Example-Read/Write

- [m}

X

Write.

Read-Robust

Results

