[bookmark: _Hlk128052582]CS 1302 – HW 6
Text Files

Contents
1	Problem 1 – Martians	2
1.1	Overview	2
1.2	Setup Eclipse Project	3
1.3	Text File Format	4
1.4	Requirement: writeMartiansFile Method	4
1.5	Requirement: readMartiansFile Method	4
1.6	Hints	5
1.6.1	Algorithm	5
1.6.2	Detecting Invalid Data	6
1.6.3	Detecting Duplicates	6
1.6.4	An Approach to Implementation	6
1.7	Test Cases – Input Files	7
1.8	Output for Test Cases	8
1.9	Extra Credit	9
1.10	Grading Criteria	9
2	Problem 2	10
2.1	Overview	10
2.2	Details	10
2.3	Problem 2 – Suggested Steps	11
3	Submission Requirements	12

General Comments:
· Type this Academic Honesty statement followed by your full name, as a comment at the top of the MartianManagerIO and NumberAdder classes:
“This homework represents my own work. I understand that I may receive help, but I did not copy any portion of this assignment from anywhere. I understand that a violation of this will result in a Report of Academic Dishonesty.—YOUR FULL NAME HERE”
· There is no HW06CompileTest for this assignment.

[bookmark: _Toc167883027]Problem 1 – Martians
[bookmark: _Toc167883028]Overview
(60 Points) The problem builds on HW 5 where you created a MartianManager and related classes as shown in the highlighted (tan) region below. For this assignment, these classes are provided to you in a Jar file. In addition, you are provided the other three classes shown below. For this assignment, you will write the two methods highlighted (yellow) in the MartianManagerIO class.
[image:]
Overview of the classes provided:
1. martianmanager.jar – Contains the MartianManager and related classes.
2. MartianManagerIO – You will write these two methods:
a. private static void writeMartiansFile(File file, MartianManager mm) – Accepts a file object and a MartianManager object and writes the martians in the manager into the file in the format described below.
b. private static ReadReport readMartiansFile(File file) – Accepts a file object, reads the martians in the file, create the appropriate type of Martian, add them to a MartianManager. However, some Martians in the file may not be in the correct format, or some Martians may be in the correct format, but are duplicates and will not be added to the MartianManager. As the reading takes place, various statistics about the read will be tallied. At the conclusion of the method, the MartianManager and the statistics will be packaged inside a ReadReport object which is the returned by the method. Details about the statistics are found in another section.
	Note: There are two public methods that are already written, that are called by the test code and which call the methods you will write. You can ignore this description below, but is provided in case you are interested.
c. public static ReadReport readMartians(String fileName) – This method is called by the test code (MartianManagerIOTest) and simply calls the helper method, readMartiansFile to do the actual read. Do not alter this method.
d. public static void writeMartians(String filename, MartianManager mm) – This method is called by the test code (MartianManagerIOTest) and simply calls the helper method, writeMartiansFile to do the actual writing. Do not alter this method.

3. ReadReport – Contains a MartianManager and a few statistics about the read. A getReport method is provided that returns a string with information about the MartianManager and the statistics, which is used by the test class. This class is completely written. Example output from the getReport method:
*** Read Report ***
File: inMartians6.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=1 vol=4, ten=2
Green Martian - id=4 vol=5
Red Martian - id=2 vol=8, ten=7
Green Martian - id=6 vol=6

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=4 vol=5
Green Martian - id=6 vol=6

Martian Manager:
Num lines read :11
Num Martians added :5
Num ill-formed lines :5
Num already exist (not added):1
4. MartianManagerIOTest – Contains test methods for testing the methods above. This class is completely written.
[bookmark: _Toc167883029]Setup Eclipse Project
Follow these steps to get Eclipse setup with the provided code:
1. Download and unzip: hw6_code.zip. You will find a prob1 and prob2 folders that correspond to the two problems for this assignment.
2. [image:]In Eclipse, choose: File, New, Java Project
a. Supply the Project name: hw6_lastname
b. Make sure “Create module-info.java file” is unchecked as shown in the figure on the right. The Module section is towards the bottom of the Crate a Java Project dialog.
c. Choose: Finish
3. Drag the prob1 and prob2 folders from the zip file into the src node in Eclipse.
4. Expand the prob1 folder and right-click martianmanager.jar and choose: Build Path, Add to Build Path
Note: The Jar file classes are in a package named mm. The import statement has already been added to the appropriate classes: import mm.*;
[bookmark: _Text_File_Format]

[bookmark: _Text_File_Format_1][bookmark: _Toc167883030]Text File Format
The format for the martians text file is shown below (left column). Thus, a GreenMartian is represented with a ‘G’ followed by the Id and the Volume. A RedMartian is represented by a ‘R’ followed by the Id, Volume, and Tenacity. An example file is shown below (right column). So, we can see that each Martian is on a separate line. For example, the first line in the example is a GreenMartian with id=3 and volume=5. The second line is a RedMartian with id=1, volume=4, and tenacity=2.
	Format, either of these is valid
	Key
	Example

	G I V
R I V T

	
	Code
	Type
	Meaning

	G
	Character
	Green Martian

	R
	Character
	Red Martian

	I
	Integer
	Id

	V
	Integer
	Volume

	T
	Integer
	Tenacity

	G 3 5
R 1 4 2
R 9 3 4
G 7 7
R 2 9 3
G 8 2
G 4 5

[bookmark: _Toc167883031]Requirement: writeMartiansFile Method
1. Open the MartianManagerIO class and find:
private static void writeMartiansFile(File file, MartianManager mm)
Write this method. As described above, this method accepts a MartianManager and should loop through the martians in the MartianManager and write the martians to the file object that is passed as an argument, using the format described above.
Hint: What MartianManager methods will you need to loop over the Martians there? Open the class in the Referenced Libraries node and look carefully at the methods or reference the Javadoc for HW 5 (where the MartianManager and related classes were originally written).
2. Open the MartainManagerIOTest class, comment out all the testReadMartians… methods, and run the testWriteMartians method. Verify that your output is correct.
[bookmark: _Requirement:_readMartiansFile_Metho][bookmark: _Toc167883032]Requirement: readMartiansFile Method
1. Open the MartianManagerIO class and find:
private static ReadReport readMartiansFile(File file)
You will write this method shortly. As described above, this method accepts a file object, reads the martians in the file and returns a ReadReport object. As martians are read, you will determine if they are valid, and if valid, attempt to add them to a MartianManager, collecting various statistics about the reading along the way. At the conclusion, you will package the MartianManager and the statistics in a ReadReport object and return it.
2. To write the readMartiansFile method in the MartainManagerIO class, note the following:
a. A valid line in the file is one of the two formats described above. If a line does not meet either of these two formats then it is considered ill-formed.
b. When you read a valid line, you can use it to create either a RedMartian or a GreenMartian. Then, you will attempt to add the martian to the MartianManager. The MartianManager’s addMartian method will only add a martian, if there doesn’t already exist a martian with the same id. The addMartian method returns true if the martian was added and false otherwise. Your code will keep track of how many martians were successfully added and how many were not added because they already exist.
c. As lines are being read, martians created, and attempting to add them to the MartianManager, your code should keep track of:
i. numLinesRead – the total number of lines read (valid or ill-formed)
ii. numSuccessfullyAdded – the total number of martians successfully added to the MartianManager
iii. numAlreadyExist – the total number of martians that could not be added to the MartianManager because they are duplicates, i.e. already exist.
iv. numIllFormed – the total number of lines read that were ill-formed.
Note: numLinesRead = numSuccessfullyAdded + numAlreadyExist + numIllFormed
d. To conclude this method, you will build a ReadReport object and return it. The constructor for that class is shown below. As you can see, to create a ReadReport, simply pass the MartianManager, the fileName, and the various statistics to the constructor:
public ReadReport(
MartianManager mm,
String fileName,
int numLinesRead,
int numSuccessfullyAdded,
int numAlreadyExist,
int numIllFormed)
The fileName is found by: file.getName()
3. You have been provided six test files: inMartians1.txt, …, inMartians6.text which are described in the Section 1.7. You should look at these carefully before coding.
4. The output for all the six test cases is shown in Section 1.8. You should look at each output and correlate with the test cases to make sure you understand what the readMartians method is supposed to do.
5. Now, write the readMartiansFile method in the MartainManagerIO class. If you are not clear on how to get started, see the next section.
6. Open the MartainManagerIOTest class, comment out all the testReadMartians… methods, except the first. Run the method and verify the output. Then, run the other testReadMartians… methods incrementally.
[bookmark: _Test_Cases_–][bookmark: _Summary][bookmark: _Hints][bookmark: _Toc167883033]Hints
[bookmark: _Toc167883034]Algorithm
Consider the general read algorithm in Ch 7, Section 7.3. Instead of a list, you have a MartianManager, thus, you’ll need to create that. Once you split the line into tokens, the general idea is:
If the data is valid
	Create the appropriate type of martian
	If you can add it to the martian manager
		Increment appropriate statistic
	Else
		Increment appropriate statistic
Else
	Increment the appropriate statistic
However, I’m not sure I would code it that way. However, I think that this is a useful way to understand the problem.

[bookmark: _Toc167883035]Detecting Invalid Data
Next, how can data be invalid?
· Invalid code – check the first token to see if it is “G” or “R”
· Too few or many parameters – Depending on whether code is “G” or “R”, check the size of the tokens array
· Non-numeric id, volume, or tenacity – Use a helper method as shown in Ch 7, Sec 8.
[bookmark: _Toc167883036]Detecting Duplicates
How do you know if a valid martian has already been added (i.e. a duplicate)? The MartianManager’s addMartian method returns true if the martian was successfully added and false if it is a duplicate.
[bookmark: _Toc167883037]An Approach to Implementation
1. Write code that doesn’t detect any invalid situations – it simply reads valid martians, creates them, and puts them in the MartianManager. When you need to create the ReadReport to return, simply put in 0 for all the statistics. The test files: inMartians1.text and inMartians2.txt have only valid martians. Test and debug as necessary.
2. Add code to keep track of: numLinesRead, numSuccessfullyAdded, numAlreadyExist (there won’t be any of those in the first two text files). Be sure an put these values into the ReadReport at the end.
3. Write code that handles an invalid code, but everything else is OK. Be sure and collect the numIllFormed statistic. Test against: inMartians3.txt has. Test and debug as necessary.
4. Write code that also handles too few or too many parameter, but the parameters themselves are correct (integers) as test file: inMartians4.txt has. Test and debug as necessary.
5. Write code that also handles invalid parameters (i.e. non-integers) as test file: inMartians5.txt has. Test file: inMartians6.txt all the different types of errors and is the only test file that has a duplicate. Test and debug as necessary. Note, your method is going to be getting big now, perhaps with some duplicated code. Now would be the time to think how to use a helper method for this requirement, and possibly the others. Sometimes, I will just write it all out, with duplication, get it to work, then refactor. Refactor means to make it easier to read and usually employing helper methods with descriptive names.
[bookmark: _Test_Cases_–_1]

[bookmark: _Toc167883038]Test Cases – Input Files
You have been provided 6 martian text files that are used in MartianManagerIOTest. This is a summary of the files.
	1.
	Title
	Small-All Correct

	File
	inMartians1.txt

	Data
	G 3 5
R 1 4 2

	2.
	Title
	Large-All Correct

	File
	inMartians2.txt

	Data
	G 3 5
R 1 4 2
R 9 3 4
G 7 7
R 2 9 3
G 8 2
G 4 5

	3.
	Title
	Invalid Martian Code

	File
	inMartians3.txt

	Data
	G 3 5
V 1 4 2 // Invalid code
R 9 3 4
G 7 7
R 2 9 3
GREEN 8 2 // Invalid code
G 4 5

	4.
	Title
	Invalid Num Parameters

	File
	inMartians4.txt

	Data
	G 3 5
R 1 2 // too few
R 9 3 4
G 7 7 9 // too many
R 2 9 3 8 // too many
G 8 2
R 5 6 // too few
G 4 5

5.
	Title
	Invalid Parameters

	File
	inMartians5.txt

	Data
	G 3 5
R 1 4j 2 7 // non-integer parameter & to many
R 4 5 6
G 5 6
G six two // non-integer parameter

6.
	Title
	Mixed Problems

	File
	inMartians6.txt

	Data
	G 3 5
R 1 4 2
R 3 4 9 // Duplicate
R 9 2 // Too few parameters
G 4 5
R 2 8 7
G 99 // Too few parameters
Green 88 99 // Invalid code
How // Invalid
R 6 6 6 6 6 6 // Too many parameters
G 6 6

[bookmark: _Output_for_Test]

[bookmark: _Output_for_Test_1][bookmark: _Toc167883039]Output for Test Cases
The correct output is shown below. Your code should produce these exactly results when the test code is run.
	*** Read Report ***
File: inMartians1.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=1 vol=4, ten=2

Teleporters:
Green Martian - id=3 vol=5

Martian Manager:
Num lines read :2
Num Martians added :2
Num ill-formed lines :0
Num already exist (not added):0

*** Read Report ***
File: inMartians2.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=1 vol=4, ten=2
Red Martian - id=9 vol=3, ten=4
Green Martian - id=7 vol=7
Red Martian - id=2 vol=9, ten=3
Green Martian - id=8 vol=2
Green Martian - id=4 vol=5

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=7 vol=7
Green Martian - id=8 vol=2
Green Martian - id=4 vol=5

Martian Manager:
Num lines read :7
Num Martians added :7
Num ill-formed lines :0
Num already exist (not added):0

*** Read Report ***
File: inMartians3.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=9 vol=3, ten=4
Green Martian - id=7 vol=7
Red Martian - id=2 vol=9, ten=3
Green Martian - id=4 vol=5

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=7 vol=7
Green Martian - id=4 vol=5

Martian Manager:
Num lines read :7
Num Martians added :5
Num ill-formed lines :2
Num already exist (not added):0

	*** Read Report ***
File: inMartians4.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=9 vol=3, ten=4
Green Martian - id=8 vol=2
Green Martian - id=4 vol=5

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=8 vol=2
Green Martian - id=4 vol=5

Martian Manager:
Num lines read :8
Num Martians added :4
Num ill-formed lines :4
Num already exist (not added):0

*** Read Report ***
File: inMartians5.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=4 vol=5, ten=6
Green Martian - id=5 vol=6

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=5 vol=6

Martian Manager:
Num lines read :5
Num Martians added :3
Num ill-formed lines :2
Num already exist (not added):0

*** Read Report ***
File: inMartians6.txt
Martian Manager:
Martians:
Green Martian - id=3 vol=5
Red Martian - id=1 vol=4, ten=2
Green Martian - id=4 vol=5
Red Martian - id=2 vol=8, ten=7
Green Martian - id=6 vol=6

Teleporters:
Green Martian - id=3 vol=5
Green Martian - id=4 vol=5
Green Martian - id=6 vol=6

Martian Manager:
Num lines read :11
Num Martians added :5
Num ill-formed lines :5
Num already exist (not added):1

	*** Write Report ***
G 1 2
R 2 3 4
R 3 4 5
G 4 5
R 5 6 7

*** Read Report ***
File: outMartians.txt
Martian Manager:
Martians:
Green Martian - id=1 vol=2
Red Martian - id=2 vol=3, ten=4
Red Martian - id=3 vol=4, ten=5
Green Martian - id=4 vol=5
Red Martian - id=5 vol=6, ten=7

Teleporters:
Green Martian - id=1 vol=2
Green Martian - id=4 vol=5

Martian Manager:
Num lines read :5
Num Martians added :5
Num ill-formed lines :0
Num already exist (not added):0

[bookmark: _Toc167883040]Extra Credit
To earn up to 10 extra points on this assignment:
1. Extract the read statistics from the ReadReport class into its own class, ReadStats and compose these two classes as shown below.
2. Modify ReadReport to make the stats instance variables protected.
3. Modify getReport to use the stats instance variable.
[image:]
[bookmark: _Toc167883041]Grading Criteria

	Weight
	Description

	9%
	Read: Test file 1

	9%
	Read: Test file 2

	8%
	Read: Test file 3

	8%
	Read: Test file 4

	8%
	Read: Test file 5

	8%
	Read: Test file 6

	10%
	Write

	60%
	Total

Plus, up to 10 extra credit points, if attempted.

[bookmark: _Toc167883042]Problem 2
[bookmark: _Toc167883043]Overview
(40 points) For this problem you will read a file of numbers adding them as you go, but skipping some of the number as indicated by a code in the file.
In the NumberAdder class, you will write the getSum method, which returns the sum of the integers read from a file. However, some numbers are skipped. When you encounter a line whose first character is ‘s’, then an integer will follow it. The integer tells you how many of the next consecutive numbers should be skipped. For Example 1 below, the yellow numbers should be added to produce 60, skipping the values as indicated. As shown in Example 3, a skip of zero doesn’t skip anything, effectively ignoring the skip. Example 4 shows a skip beyond the length of the file which should just skip to the end of the file, ignoring the invalid skips. Finaly, Example 5 shows overlapping (or embedded) skips. The embedded skip, s5, is effectively ignored, meaning it is treated as any other skipped value.
	Example 1 – Sum=60
	Example 2 – Sum=90
	Example 3 – Sum=10
	Example 5 – Sum=10

	[image: E:\Data-Classes\CS 1302 - Programming 2\homework\Fall, 2015\hw7\a.jpg]
	s5
2
43
3
6
9
12
4
56
s2
10
4
8
s2
1
5
s2
4
2
10
	2
3
s0
4
1

	2
3
s3
4
s5
2
4
1

	
	
	Example 4 – Sum=5
	

	
	
	2
3
s7
4
1

	

[bookmark: _Toc167883044]Details
In the prob2 package you will find a NumberAdder class as shown below. Write the getSum method (stub provided). This is also the test class as main calls getSum 10 times, passing it a different text file each time.
public class NumberAdder {
	private static final String IN_FILE_PATH = "src/prob2/";
	// I have supplied test files: t1.txt, t2.txt, ..., t10.txt
	// You will need to verify the expected output by hand to ensure
	// that your code gives the correct value.
	static String[] inFileNames = {"t1.txt", "t2.txt", "t3.txt", "t4.txt", "t5.txt",
			"t6.txt", "t7.txt", "t8.txt", "t9.txt", "t10.txt"};
	
	public static void main(String[] args) throws FileNotFoundException {
		// Comment out most of these as you test/debug.
		File file;
		file = new File(IN_FILE_PATH + inFileNames[0]);
		System.out.println("Sum=" + getSum(file));
		file = new File(IN_FILE_PATH + inFileNames[1]);
		System.out.println("Sum=" + getSum(file));
		file = new File(IN_FILE_PATH + inFileNames[2]);
		...
	}
	/**
	 * YOU WRITE THIS METHOD
	 */
	public static int getSum(File file) {
		return Integer.MAX_VALUE;
	}
	...
}
[bookmark: _Toc167883045]Problem 2 – Suggested Steps
If you need help getting started, I’d use baby steps:
1. Create a simpler text file to start with:
0. Write a text file named: test.txt with these values: 1 2 a 3 4 5
0. Comment out all code in main.
0. Add these lines to main:
File file;
file = new File(IN_FILE_PATH + test.txt);
System.out.println("Sum=" + getSum(file));
1. Write getSum so that it simply adds up all the numbers in the file. Thus, you need to read each token as a string, and then ask if it is an integer. If it is, add it. If it is not, then skip it. See Chapter 7, Section 8 to see how to determine if a string is an inteter.
1. Run, and verify that the output is 15. If not, debug and fix your code.
1. Modify test.txt so that the values are: 1 2 a b 3 c 4 5.
1. Run and verify that the output is 15. If not, debug and fix your code.
1. Add a skip to test.txt: 1 2 s2 3 4 5. Thus, the expected result is 8 once you modify getSum.
1. Modify getSum to detect and obey the skip:
6. When you detect that a token is not an integer, then you can assume it is a skip, i.e. the first character is an ‘s’. So, write code to strip off the strip length. See Chapter 1, Appendix 1.4 to see how to use the substring method.
6. Put an inner for loop (i.e. inside the while(scanner.hasNext()) loop) that goes from 0 to less than the strip length. Each time it should simply read the next token and do nothing with it.
6. Run and verify that the output is 8. If not, debug and fix your code.
1. Comment out the two lines in main and then uncomment the first test case:
File file;
file = new File(IN_FILE_PATH + inFileNames[0]);
System.out.println("Sum=" + getSum(file));
1. Run and verify the output. If incorrect, then debug and fix your code.
1. Repeat steps 8 and 9 with the second test case, then the third, etc.

[bookmark: _Toc167792968][bookmark: _Toc167883046]Submission Requirements
Checklist:
	
	Complete?
	Requirement

	1.
	
	The Academic Honesty statement followed by your full name, appears as a comment at the top of the MartianManagerIO and NumberAdder classes.

	2.
	
	All Java files (including test classes and textfiles) are in the prob1 and prob2 packages, respectively.

	3.
	
	Your prob1 and prob2 folders are zipped into a file name: hw6_yourLastName.zip.
· See Lab 2, Stage 9 for exact instructions.
· Do not zip your workspace folder
· Do not zip your src folder.
· Do not zip just the java files
· Do zip just your prob1 folder

	4.
	
	Submit in the hw6 dropbox on Blazeview by the deadline.

21

image3.jpeg
ReadReport

+ReadReport(mm:MartianManager,
stats:ReadStats)
+getReport():String

stats

MartianManager

ReadStats

fileName:String
numLinesRead:int
numSuccessfullyAdded:int
numAlreadyExist:int
numlllFormed:int

+ReadStats(fileName, numLinesRead,
numSuccessfullyAdded,
numAlreadyExist, numllIFormed)
+getFileName():String
+getNumLinesRead():int
+getNumSuccessfullyAdded():int
+getNumAlreadyExist():int
+getNumlllFormed():int

image4.jpeg
52 —»Skip next 2
99 numbers

1 —»Skip next number

“n

image1.jpeg
martianmanager.jar

martians ¥

ReadReport

mm:MartianManager
fileName:String
numLinesRead:int
numSuccessfullyAdded:int

numAIreadyEX|'st:|nt RedMartian
numlliFormed:int
+ReadReport(mm,fileName,numLinesRead,

numSuccessfullyAdded,numAlreadyExist, MartianManagerlO

numlllFormed)
+getReport():String

MartianManagerlOTest

+writeMartians(fileName:String,
mm:MartianManager)

+readMartians(fileName:String):ReadReport

You will write these
two methods

image2.png
& New Java Project o X

Create a Java Project ﬁ
Create a Java project in the workspace or in an external location.

Project name: | hw6_gibson|

Use default location

FA\data_courses\CS 1302 - new\homework\hw06_textfile\delme\hwé_
JRE
@ Use an execution environment JRE: | JavaSE-20
(O Use a project specific JRE: jdk-20

O Use default JRE ‘jdk-20" and workspace compiler preferences

Project layout

(O Use project folder as root for sources and class files

(@ Create separate folders for sources and class files

Working sets

[Add project to working sets

Module
[Create module-info java file

Generate comments.

<Back Next > Einish Cancel

