CS 1302 – HW 5
Abstract Classes & Interfaces
Contents
1	Overview	1
2	Problem 1 – 100 Points	2
2.1	Overview	2
2.2	Steps to Complete	2
2.2.1	Martian Class	2
2.2.2	RedMartian Class	3
2.2.3	GreenMartian Class & Teleporter Interface	3
2.2.4	MartainManager Class	4
3	Grading Criteria	7
4	Submission Requirements	7
Appendix 1	n/a	8

[bookmark: _Toc167886182]Overview
1. You will write 5 classes with a total of 38 methods (60% of grade). Documentation for the classes you will write is found on the HW page.
2. You will write 49 test methods (40% of grade).
3. Ensure that the provided HW05CompileTest.java compiles. This ensures that you have properly implemented the signature of the methods which allows my grading program to operate on your code. This file is found in hw05_code.zip on the HW page.
4. Type this Academic Honesty statement followed by your full name, as a comment at the top of the MartianManager class:
“This homework represents my own work. I understand that I may receive help, but I did not copy any portion of this assignment from anywhere. I understand that a violation of this will result in a Report of Academic Dishonesty.—YOUR FULL NAME HERE”

[bookmark: _Toc167886183]Problem 1 – 100 Points
[bookmark: _Toc167886184]Overview
You will write the classes and interface shown in the class diagram below (except Comparable as that is part of Java) as well as test classes. Documentation on classes is found on the Schedule.
[image:]

[bookmark: _Toc167886185]Steps to Complete
[bookmark: _Toc167886186]Martian Class
1. Reference the documentation for the classes (link is where HW 5 is provided on the HW Page for the course).
2. Create a package named prob1.
3. Write the abstract Martian class (Ch 5, Sec 3). Note that it implements the Comparable interface (Ch 5, Sec 7). (If we haven’t gotten to the Comparable interface in class, write the Martian class but ignore the compareTo method, and come back to it when we have covered it.)

[bookmark: _Toc167886187]RedMartian Class
4. Write the RedMartian class.
5. Write the RedMartianTest class with test methods:
a. [bookmark: _Hlk165298571]testSpeakAndToString – I’m suggesting you test two methods (speak and toString) in one test method. You are just checking to see that the required format for these two methods is realized by your code. Another reason to test toString is to ensure that the format is correct before you test the toString for the MartianManager, which will use the toString for RedMartian (and GreenMartian).
b. testEquals_Success – Create two reds that have the same id and make sure the return is true.
c. testEquals_Fail – Similar to previous except the return is false
d. testCompareTo_Negative – Create two reds such that the first is “less than” the second and thus you expect the return to be negative.
e. testCompareTo_Positive – Similar to previous test.
f. testCompareTo_Zero – Similar to previous test, i.e. two reds with the same id.
g. testPower – Create a red and check its power.
h. testPower_changeVolume – Create a red, change its volume, then check its power.
[bookmark: _Toc167886188]GreenMartian Class & Teleporter Interface
6. Write the Teleporter interface.
7. Write the GreenMartian class.
8. Write the GreenMartianTest class with test methods:
a. [bookmark: _Hlk165298964]testSpeakAndTeleportAndToString – Similar to testSpeakAndToString above.
b. testEquals_Success – Similar to version in RedMartianTest above, except use 2 greens.
c. testEquals_Fail – Similar to version in RedMartianTest above, except use 2 greens.
d. testEquals_RedAndGreen_Success – Similar to version in RedMartianTest above, except use 1 red and 1 green.
e. testCompareTo_RedAndGreenPositive – Similar to version in RedMartianTest above, except use 1 red and 1 green.
f. testPower – Create a green and check its power.

[bookmark: _Toc167886189]MartainManager Class
9. [bookmark: _Hlk165297627]Begin the MartianManager class.
a. Write the code to declare and create the two lists.
b. Write these methods: addMartian(m:Martian):boolean, getNumMartians():int, getNumTeleporters():int.
c. Write the MartianManagerTest class with these test methods:
These tests aren’t too good.
i. testAddMartian_Red_Success – add a red and verify only one martian, and no teleporters, and return is true.
ii. testAddMartian_Green_Success – add a green and verify only one martian, and one teleporter, and return is true.
iii. [bookmark: _Hlk148175146]testAddMartian_RGGR_Success – add a red, a green, a green, and a red and verify the martian manager contains 4 martians, and 2 teleporters.
iv. testAddMartian_RGGR_Failure – add a red, a green, a green, and a red and verify the martian manager contains 3 martians, and 1 teleporters. Thus, the 2 greens will have the same id.
10. Continue the MartianManager class.
a. Write this method: toString():String
b. In MartianManagerTest, write this test method:
i. testToString – I’d suggest: add 2 reds and 2 greens and verify output.
11. Continue the MartianManager class.
a. Write these methods: getMartianAt(i:int):Martian, getTeleporterAt(i:int):Teleporter
b. In MartianManagerTest, write these test methods:
i. testGetMartianAt_ValidIndex – I’d suggest adding 4 martians, the call method with a valid index.
ii. testGetMartianAt_InvalidIndex_Low – Test with an index that is negative.
iii. testGetMartianAt_InvalidIndex_High – Test with an index that is >= size of list.
iv. testGetTeleporterAt_ValidIndex – I’d suggest adding 6 martians with 4 being green, the call method with a valid index for teleporters.
v. testGetTeleporterAt_InvalidIndex_Low – Test with an index that is negative.
vi. testGetTeleporterAt_InvalidIndex_High – Test with an index that is >= size of teleporters list.
12. Continue the MartianManager class.
a. Write this method: getMartianWithId(id:int):Martian
b. In MartianManagerTest, write these test methods:
i. testGetMartianWithId_Success – Add 4 martians, then call with an id that exists.
ii. testGetMartianWithId_Failure – Add 4 martians, then call with an id that does not exist.

13. Continue the MartianManager class.
a. Write this method: contains(id:int):bool
b. In MartianManagerTest, write these test methods:
i. testContains_Success – add a few, then ask if it contains a martian (red or green) with an id that does not exist.
ii. testContains_Failure – add a few, then ask if it contains a martian (red or green) with an id that exists.
14. Continue the MartianManager class.
a. Write these methods: groupSpeak():String, groupTeleport(dest:string):String
b. In MartianManagerTest, write these test methods:
i. testGroupSpeak – I’d suggest, add 2 reds and a green and verify format of output is correct.
ii. testGroupTeleport – I’d suggest, add 1 reds and and 3 greens and verify format of output is correct.

15. Continue the MartianManager class.
a. Write this method: removeMartianAt(loc:int):Martian
b. In MartianManagerTest, write these test methods:
i. testRemoveMartianAt_Success_Red – Add 2 reds and 2 greens, then call with a valid index of one of the reds
ii. testRemoveMartianAt_Success_Green – Add 2 reds and 2 greens, then call with a valid index of one of the greens
iii. testRemoveMartianAt_Failure – Add 4 martians, then call with an invalid index.
16. Continue the MartianManager class.
a. Write this method: removeMartianWithId(id:int):Martian
b. In MartianManagerTest, write these test methods:
i. testRemoveMartianWithId_Success_Red – Add 2 reds and 2 greens, then call with a valid red id.
ii. testRemoveMartianWithId_Success_Green – Add 2 reds and 2 greens, then call with a valid green id
iii. testRemoveMartianWithId_Failure – Add 4 martians, then call with an invalid id.
17. Continue the MartianManager class.
a. Write this method: getMartianClosestTo(id:int):Martian
b. In MartianManagerTest, write these test methods:
i. testGetMartianClosestTo_Index_LowerMatch – I’d suggest: add 2 reds and 2 greens with id’s like: 1, 3, 8, 13. Then call method with id=4, expect to find martian with id=3
ii. testGetMartianClosestTo_Index_LowerMatch – I’d suggest: add 2 reds and 2 greens with id’s like: 1, 3, 8, 13. Then call method with id=6, expect to find martian with id=8

18. Continue the MartianManager class.
a. Write this method: getMartianClosestTo(m:Martian):Martian
b. In MartianManagerTest, write these test methods:
i. testGetMartianClosestTo_Martian_LowerMatch – I’d suggest: add 2 reds and 2 greens with id’s like: 1, 3, 8, 13. Then call method with a martian with id=6, expect to find martian with id=8. We’ll just do one test for this method.
19. Continue the MartianManager class.
a. Write this method: getSortedMartians():ArrayList<Martian>
b. In MartianManagerTest, write these test methods:
i. testGetSortedMartians – Add 4 martians with ids (in this order): 4, 8, 1, 2. Verify that sorted order is correct AND that order is preserved in the internal arraylist.
20. Continue the MartianManager class.
a. Write this method: absorbColony(colony:ArrayList<Martian>)
b. In MartianManagerTest, write this test method:
i. testAbsorbColony– Add 4 martians and put 2 in the colony.
21. Continue the MartianManager class.
a. Write this method: obliterateTeleporters()
b. In MartianManagerTest, write these test methods:
i. testObliterateTeleporters_One – I’d suggest: add 3 including exactly 1 green.
ii. testObliterateTeleporters_Many – I’d suggest: add 6 including exactly 3 greens.
22. Continue the MartianManager class.
a. Write this method: battle(invaders:ArrayList<Martian>):ArrayList<Martian>
b. (Read, no action required) You’ll want to carefully construct the test methods to test the battle method. When you create the martians and invaders, I suggest putting a comment beside that tells what the power is (for easy reference). For example:
RedMartian r1 = new RedMartian(1,1,1); // power=2
RedMartian r2 = new RedMartian(2,2,2); // power=4
GreenMartian g1 = new GreenMartian(3); // power=1
After the battle, your test needs to verify that that both the list of martians in the MartianManager and the returned list of “killed” martians are correct. You might just print the id’s of the martians and the ids of those killed. You decide how you want to demonstrate that your method works.
c. In MartianManagerTest, write these test methods:
i. testBattle_One_on_One_One_Kill – One martian in martian manager and one invader that kills the martian.
ii. testBattle_One_on_One_No_Kill – One martian in martian manager and one invader that does not kill the martian.
iii. testBattle_Four_on_Two_One_Kill –I’d suggest something like this: 4 martians (2 reds and 2 greens) and 2 invaders (1 red and 1 green). Set their id’s such that one invader gets a kill, and the other doesn’t. Thus, only 1 kill.
iv. testBattle_Five_on_Three_Two_Kills – I’d suggest: 5 martians, 3 invaders, 2 kills.
23. Continue the MartianManager class.
a. Write this method: captureInvaders(invaders:ArrayList<Martian>):ArrayList<Martian>
b. In MartianManagerTest, write these test methods:
i. testCaptureInvaders_Five_on_Three_Two_Captures – Five martians, 3 invaders, 2 captures.
[bookmark: _Toc167886190]Grading Criteria
The automated tests that run over the domain classes count for 60.5%. The test classes you write count for 39.5%.
	Grading Criteria
	Max Points
	Max %
	

	Automated Martian Tests
	72
	56.8%
	60.5%

	Red/GreenMartian.toString
	1
	0.8%
	

	MartianManager.groupSpeak
	1
	0.8%
	

	MartianManager.Teleport
	1
	0.8%
	

	MartianManager.toString
	3
	2.3%
	

	RedMartianTest-8 methods
	9
	7.0%
	39.5%

	GreenMartianTest-6 methods
	7
	5.4%
	

	MartianManagerTest-35 methods
	35
	27.1%
	

	Total
	129
	100%
	

[bookmark: _Toc167101642][bookmark: _Toc167886191]Submission Requirements
Checklist:
	
	Complete?
	Requirement

	1.
	
	HW05CompileTest compiles.

	2.
	
	The Academic Honesty statement followed by your full name, appears as a comment at the top of the MartianManager class.

	3.
	
	All java files (including test classes) are in the prob1 package.

	4.
	
	Your prob1 folder is zipped into a file name: hw5_yourLastName.zip.
· See Lab 2, Stage 9 for exact instructions.
· Do not zip your workspace folder
· Do not zip your src folder.
· Do not zip just the java files
· Do zip just your prob1 folder

	5.
	
	Submit in the hw 5 dropbox on Blazeview by the deadline.

[bookmark: _Hlk71199949]Appendix
[bookmark: Appendix_1][bookmark: _Toc167886192]n/a
21

image1.jpeg
MartianManager

Comparable<Martian>

compareTo(m:Martian):int

N

martians ¥

+addMartian(m:Martian):boolean
+absorbColony(colony:ArrayList<Martian>)
+battle(invaders:ArrayList<Martian>):

ArrayList<Martian>
+capturelnvaders(invaders:ArrayList<Martian>):

ArrayList<Martian>
+contains(id:int):bool
+getMartianAt(loc:int):Martian
+getMartianClosestTo(id:int):Martian
+getMartianClosestTo(m:Martian):Martian
+getMartianWithld(id:int):Martian
+getNumMartians():int
+getNumTeleporters():int
+getSortedMartians():ArrayList<Martian>
+getTeleporterAt(i:int):Teleporter
+groupSpeak():String
+groupTeleport(dest:string):String
+obliterateTeleporters()
+removeMartianAt(loc:int):Martian
+removeMartianWithld(id:int):Martian
+toString():String

“Martian” <t

-id:int
-volume:int

teleporters

+Martian(id:int,vol:int)
+compareTo(m:Martian):int
+equals(o:Object):bool
+getld():int
+getVolume():int
+setVolume(v:int)
+"power():int”
+”speak():String”

*

Teleporter

GreenMartian

teleport(dest:String):String

+GreenMartian(id:int,vol:int)

+GreenMartian(id:int)
+speak():String
+teleport(dest:String):String
+toString():String

RedMartian

-tenacity:int

+RedMartian(id:int,ten:int)
+getTenacity():int
+speak():String
+toString():String

+RedMartian(id:int,vol:int,ten:int)

