CS 1302 – HW 2
1-many Association Implemented with an Array

Contents
1	Overview	2
2	Setup Project with Jar File	3
3	Notes about the Test Code	4
4	Steps to Complete	4
4.1	Phase 1 – addEmployee	4
4.2	Phase 2 - toString	5
4.3	Phase 3 – getEmployee	5
4.4	Phase 4 – getTotalHours	5
4.5	Phase 5 – getTotalPay	5
4.6	Phase 6 – removeEmployee	5
4.7	Phase 7 – getEmployeeWithName	5
4.8	Phase 8 – HW02CompileTest	6
5	Grading Criteria	6
6	Submission Requirements	6

[bookmark: _Toc176419141]Overview
1. You will write the Store class shown in the class diagram below. The Employee[footnoteRef:1] class has been provided to you in a JAR file[footnoteRef:2]. Instructions for using the JAR file are in the next section. Documentation for the Store and Employee classes is provided on the Homework page. [1: This is the Employee class from HW 1; however, you will use my version of the class to prevent any errors you may have had in yours from affecting this HW.] [2: A Jar file is the standard way to distribute Java class files. You can only use the Employee class, you cannot modify the code, https://en.wikipedia.org/wiki/JAR_(file_format),]

[image:]
2. You have been provided the StoreTest class. It contains 20 test methods, 5 of which have been written. You will write the rest of them.
3. Ensure that the provided HW02CompileTest.java compiles. This ensures that you have properly implemented the signature of the methods which allows my grading program to operate on your code.
4. Type this Academic Honesty statement followed by your full name, as a comment at the top of the Store class:
“This homework represents my own work. I understand that I may receive help, but I did not copy any portion of this assignment from anywhere. I understand that a violation of this will result in a Report of Academic Dishonesty.—YOUR FULL NAME HERE”
[bookmark: _Toc176419142]Setup Project with Jar File
[image:]Follow the steps below to setup your HW 2 project to use a Jar file.
1. In Eclipse, create a Java Project named hw2_lastname. As shown on the right at the bottom, Uncheck, “Create module-info.java file”.
2. Download and unzip: hw2_code.zip. You will find a prob1 folder that contains two files: StoreTest.java and employeestuff.jar.
3. [bookmark: _GoBack]Drag the prob1 folder into the src node in the Package Explorer
4. Create a class (with a main) in the prob1 package named Store.
5. Right-click employeestuff.jar and choose: Build Path, Add to Build Path.
Notice (see figure below) that a Referenced Libraries node has been added to the project and employeestuff.jar has been moved there, as shown in the figure on the right. If you expand the employeestuff.jar node you will see the emp package and the Employee class as well as the class members.
[image:]
6. Add the import below to the Store class. This import the Employee class in the Jar file
import emp.Employee;
If you get a compile error then start completely over with a new project.
7. Test by creating an Employee. Add this line to main in the Store class:
Employee e = new Employee("Will", 22.33);
System.out.println(e);
This should compile and run properly; if it doesn’t, start over. Note that StoreTest does not yet compile.
[bookmark: _Toc176419143]Notes about the Test Code
The names of the 20 test methods in StoreTest are shown below. The highlighted ones are written for you. Method stubs[footnoteRef:3] have been provided for the others with comments above each to describe what the test method should do. [3: A method stub is a method with no code, or if the method returns something, it returns an arbitrary value.]

21

testAddEmp_Add_1();
testAddEmp_Add_3();
testAddEmp_Add_20();
testAddEmp_Add_21();
testGetEmp_5_Emps_Loc_Minus_2();
testGetEmp_5_Emps_Loc_0();
testGetEmp_5_Emps_Loc_2();
testGetEmp_5_Emps_Loc_4();
testGetEmp_5_Emps_Loc_5();
testGetTotalHours_3_Employees();
testGetTotalPay_3_Employees();
testRemoveEmployee_With_5_Employees_Loc_Minus_2();
testRemoveEmployee_With_5_Employees_Loc_0();
testRemoveEmployee_With_5_Employees_Loc_2();
testRemoveEmployee_With_5_Employees_Loc_4();
testRemoveEmployee_With_5_Employees_Loc_5();
testRemoveEmployee_With_20_Employees_Loc_19();
testGetEmployeeWithName_Found();
testGetEmployeeWithName_NotFound();
testToString();

Towards the bottom of StoreTest, there are four helper methods (fully implemented) which you can use:
· createTestEmployee – Creates and returns an Employee object with 5 hours Monday-Friday.
· createStoreWith3Employees – Creates and returns a Store object with 3 Employee objects with varying hours.
· createStoreWith5Employees – Creates and returns a Store object with 5 Employee objects with varying hours.
· createStoreWith20Employees – Creates and returns a Store object with 20 Employee objects.
4 of the test methods that are written for you use one of these helper methods. You should take a look at these helper methods as they will save you time.
[bookmark: _Toc176419144]Steps to Complete
The development work is broken into Phases below to emphasize: writing a method, then write code to test it, and evaluate the results.
[bookmark: _Toc176419145]Phase 1 – addEmployee
1. Add the three instance variables to the Store class. MAKE THE hours INSTANCE VARIABLE PROTECTED, NOT PRIVATE.
protected Employee emps[] = new Employee[20];
2. Add the no-arg constructor to that initializes the number of employees to 0.
3. Write the getNumEmployees method.
4. Write the addEmployee method.
5. In StoreTest write these test methods:
testAddEmp_Add_1 (provided)
testAddEmp_Add_3
testAddEmp_Add_20
testAddEmp_Add_21.
	Reminder (this pertains to all of the test methods you will write):
· Each test method should have a comment explaining what you are testing (this is already provided in the StoreTest).
· main should simply call each of the test methods one after the other (this is already provided in the StoreTest).
· Each test method should be stand-alone and independent of other test methods. For example, each test method will create a Store object, starting from scratch, and building the Store object so that it can be tested. It is useful, sometimes, to create helper methods to create things. As previously mentioned, several helper methods are provided in StoreTest.
· Each test method should display nicely formatted output to the console that shows that the expected and actual results that can be used to verify that the method work correctly.
· Do not expect full credit for this unless you have written thorough, organized, self-documenting test code that produces meaningful output.

6. Run the add tests, verify out, debug as necessary.
[bookmark: _Toc176419146]Phase 2 - toString
1. Write the toString method. The toString method can be made over complicated, when in fact most of the work is already done for you. You just display 3 values about the store, and then loop over the employees array and call toString on each of the employees. In other words, the Employee’s toString returns a “Pay Stub”. See the documentation for the exact format the return should be in.
2. In StoreTest, run testToString (method is provided), verify output, debug as necessary.
[bookmark: _Toc176419147]Phase 3 – getEmployee
1. Write the getEmployee method.
2. In StoreTest write these test methods below. Run tests, verify output, debug as necessary.
testGetEmp_5_Emps_Loc_Minus_2 (provided),
testGetEmp_5_Emps_Loc_0,
testGetEmp_5_Emps_Loc_2,
testGetEmp_5_Emps_Loc_4,
testGetEmp_5_Emps_Loc_5
[bookmark: _Toc176419148]Phase 4 – getTotalHours
1. Write the getTotalHours method.
2. In StoreTest write this test method: testGetTotalHours_3_Employees. Run test, verify output, debug as necessary.
[bookmark: _Toc176419149]Phase 5 – getTotalPay
1. Write the getTotalPay method.
2. In StoreTest write this test method: testGetTotalPay_3_Employees. Run test, verify output, debug as necessary.
[bookmark: _Toc176419150]Phase 6 – removeEmployee
1. Write the removeEmployee method.
2. In StoreTest write these test methods below. Run tests, verify output, debug as necessary.
testRemoveEmployee_With_5_Employees_Loc_Minus_2,
testRemoveEmployee_With_5_Employees_Loc_0 (provided),
testRemoveEmployee_With_5_Employees_Loc_2,
testRemoveEmployee_With_5_Employees_Loc_4,
testRemoveEmployee_With_5_Employees_Loc_5,
testRemoveEmployee_With_20_Employees_Loc_19
[bookmark: _Toc176419151]Phase 7 – getEmployeeWithName
1. Write the getEmployeeWithName method.
2. In StoreTest write these test methods below. Run tests, verify output, debug as necessary.
testGetEmployeeWithName_Found (provided)
testGetEmployeeWithName_NotFound
[bookmark: _Toc176419152][bookmark: _Hlk167272390]Phase 8 – HW02CompileTest
If HW02CompileTest compiles and runs, you are done.
If not, any compile error in this code means that the signature (spelling of method, return type, number of parameters, type of parameters) of the method YOU wrote is incorrect. Usually, the spelling is incorrect, but sometimes you get data types wrong. Change your code so that HW02CompileTest compiles and runs.
· If you didn't implement a method, then add a "stub" to your code so that this class compiles and to make the grading process go more smoothly on my end. Some example stubs for various methods:
	public double getPay() {
 return Double.MAX_VALUE;
}
	public void mergeEmployee(Employee e) {
}

public Employee getEmployeeWithMostHours(Employee[] emps) {
 return null;	
}
· If you need to correct the spelling of a method, be sure and use: Refactor/Rename, which changes all occurrences in all files. See Lab 2 if needed.
[bookmark: _Phase_7][bookmark: _Toc176419153]Grading Criteria
	Grading Criteria
	Points

	Store
	75

	StoreTest
	25

	Total
	100

[bookmark: _Toc111809291][bookmark: _Toc176419154]Submission Requirements
Checklist:
	
	Complete?
	Requirement

	1.
	
	HW02CompileTest compiles.

	2.
	
	The Academic Honesty statement followed by your full name, appears as a comment at the top of the Store class.

	3.
	
	All java files (including test classes and JAR file) are in the prob1 package.

	4.
	
	Your prob1 folder is zipped into a file name: hw2_yourLastName.zip.
· See Lab 2, Stage 9 for exact instructions.
· Do not zip your workspace folder
· Do not zip your src folder.
· Do not zip just the java files
· Do zip just your prob1 folder

	5.
	
	Submit in the hw2 dropbox on Blazeview by the deadline.

image3.png
code - Eclipse IDE - u] X

File Edit Navigate Search Project Bad Smells Run Window Help
(=R BinitvOv Qv QAUvH#GYBE S~
RIS | Q @& 4 <UMLLab>
& Project Explorer X ER-Srd i =8 =g
& 08-to class ~
2 09_toclass
& 09-Recursion
' 10-Gui (in 06-Gui)
&5 10-Gui, 2
& 11-Project-Airport
& 11-Project-Airport-Solution
& Comparator2
& deleteme
& eww
& hw10_gibson
~ & hw2_dgibson
=\ JRE System Library [JavaSE-20]
~ @ src
« g prob1
[Storejava
& StoreTestjava
~ &\ Referenced Libraries
~ @ employeestuffjar
v @ emp
~ 13 Employee.class
~ @ Employee
& main(String[) : void
= hours
= name
= payRate
Employee(String, double)
© getHours(int) : double
© getName(): String

© getNumDaysWorked() : int Ve 8
o getpay(): double 3943 errors, 531 wanings, 20 others (Filter matched ;

Do ¥ Descrintion S

< 31 < >

o,

glp x @) BD &S 2c AF — 8

image1.jpeg
: Employee

#emps:Employee[20] -hours:double[7]
-numEmps:int

-name:string
+Store()

-payRate:double

+addEmployee(e:Employee) +Employee(name:string,payRate:double)
+getEmployee(i:int):Employee +getHours(day:int):double
+getEmployeeWithName(name:String) +setHours(day:int,hrs:double)
+getNumEmployees():int +getName():string
+getTotalHours():double +getPayRate():double
+getTotalPay():double +getNumDaysWorked():int
+removeEmployee(i:int):Employee +getTotalHours():double
+toString():string +getWeekdayHours():double

+getWeeke8dHours():double

. +newWeek
Provided to you +getPay()-double

in a JAR file +mergeEmployee(emp:Employee)

+toString():string

image2.png
& New Java Project o

Create a Java Project &
Create a Java project in the workspace or in an external location.

Project name: | hw2_dgibson

Use default location

FA\data_courses\CS 1302 - new\homework\code\hw2_dgibson
JRE
@ Use an execution environment JRE: | JavaSE-20

(O Use a project specific JRE: jdk-20

O Use default JRE ‘jdk-20" and workspace compiler preferences

Project layout
(O Use project folder as root for sources and class files

(@ Create separate folders for sources and class files

Working sets

[Add project to working sets

Module
[Create module-info java file

<

<Back Next > Einish Cancel

