Chapter 7 - Classes and Objects, OO Programming, Part A

Sections Pages Review Questions Programming Exercises

7.1-7.11 230-253 1-20 1-4

Custom Objects

1. Consider this example of creating and using a custom object. A box has length, width, and height and a method
to calculate its volume. Run program and discuss.

public class Box

{
public double length, width, height;

public Box(double 1, double w, double h)

{
length = I;
width = w;
height = h;
by
public static void main(String[] args)
{
Box b = new Box(4,6,2);
System.out.printIn(b.toString());
b.length = 6;
System.out.printIn(b.toString());
by
public double volume()
{
return length*width*height;
by
public String toString()
{
String format = ""This box has length, width, and height: *;
format += "(%.2F, %.2F, %.2F),\n and volume: %.2f";
String msg = String.format(format, length, width, height,
volume());
return msg;
by

}

The output is:
This box has length, width, and height: (4.00, 6.00, 2.00),
and volume: 48.00
This box has length, width, and height: (6.00, 6.00, 2.00),
and volume: 72.00
Constructors — Notice in main where we create a box:
Box b = new Box(4,6,2);
This special statement invokes the constructor for the Box class:

public Box(doublle I, double w, double h)

{
length = I;
width = w;
height = h;
}

In other words, the constructor creates (instantiates) a box by setting the values for the length, width, and
height.

Suppose we want to compare two boxes and determine the percentage difference in their volumes. We could
add a method to the Box class:

public double volumeDifference(Box b)

{ double thisBoxVolume = volume();
doublle otherBoxVolume = b.volume();
doublle percentDifference =
(thisBoxVolume - otherBoxVolume) / otherBoxVolume * 100;
) return percentDifference;

And we can test this code with:

Box bl new Box(6,6,2);

Box b2 new Box(4,6,2);

System.out.printin(bl.volumeDifference(b2));

Notice that we have used main to test the Box class. Next, solve a problem: Read the dimensions of two boxes
and compare their volumes with percentage differences. Thus, main needs to read these dimensions and build
boxes. We could write this code straight away, but there would be a lot of duplicate code. Or, we could use a
method to help main. Notice that when main needs help, we write static methods. So, we add this method:

public static Box createBox()

{
Scanner s = new Scanner(System.in);
System.out.print("Enter length: ");
doublle len = s._.nextDouble();
System.out._print("Enter width: ');
double wid = s.nextDouble();
System.out.print("Enter height: ");
double ht = s.nextDouble();
Box b = new Box(len, wid, ht);
return b;

by

And we code the main this way:

Box bl
Box b2

createBox();
createBox();

double percentDiff = bl.volumeDifference(b2);

String size

percentDiff > 0 ? "larger™ : "smaller™;

percentDiff = Math.abs(percentDiff);
String format = ""The fTirst box is %.0f%% " + size +
" than the second box.";

System.out.printf(format, percentDiff);

Usually, however, it is simpler to write two different classes. For instance, we write the Box class which
contains only information about a box. And, we write a BoxCompare class to solve our problem. We can put
these two classes in the same file, BoxCompare.java (see code below). Notice how we have kept all the
information about a box in the Box class and all the information about the problem in the BoxCompare class.

import java.util.*;

public class BoxCompare

{

public static void main(String[] args)

{

}

Box bl
Box b2

createBox();
createBox();

doublle percentDiff = bl.volumeDifference(b2);

String size

percentDiff = Math.abs(percentDiff);

String format = ""The Tirst box is %.0F%% " + size +
' than the second box.";

System.out.printf(format, percentDiff);

public static Box createBox()

{

Scanner s = new Scanner(System.in);

System.out.print("Enter length: ");
double len = s.nextDouble();

System.out.print("Enter width: ");
double wid = s.nextDouble();
System.out.print("Enter herght: ");
double ht = s.nextDouble();

Box b = new Box(len, wid, ht);

return b;

percentDiff > 0 ? "larger™ : "smaller™;

class Box

{

public double length, width, height;

public Box(double 1, double w, double h)

{
length = I;
width = w;
height = h;

by

public double volume()

{
return length*width*height;

by

public double volumeDifference(Box b)

{
double thisBoxVolume = volume();
double otherBoxVolume = b.volume();
doublle percentDifference =

(thisBoxVolume - otherBoxVolume) / otherBoxVolume * 100;

return percentDifference;

by

public String toString()

{
String format = ""This box has length, width, and height: *;
format += "(%.2F, %.2F, %.2F),\n and volume: %.2Ff";
String msg = String.format(format, length, width, height,

volume());

return msg;

by

}

6. Finally, we could put the two classes in separate files, put the BoxCompare class in BoxCompare.java and the
Box class in Box.java. Each must be compiled and we run the program as before (java BoxCompare). This will
work as long as Box.java is in the same folder as BoxCompare.java. In most development projects, each class is
in a separate file. This has an advantage because then we can put a main in each class that tests each that
particular class, individually. In fact, that is what we did in the example on the first page, main for the Box class
simply called its methods and set some values. When you run a class (java BoxCompare), it's main is called. If
that code subsequently uses a different class in another file, the main in this other class (Box) is ignored.

Object Oriented Methodology Overview

1. Aclassis a template for making objects. A class specifies properties (data fields) and methods (behaviors,
responsibilities, services). When an object is created from a class, it’s properties and methods can be accessed.

2. A convenient way to represent a class is to use UML (Unified Modeling Language). We model a class with a
figure as shown in (a). For instance the Box class can be represented as in (b) or (c), where the data types and
return types are also shown. We call either (b) or (c) a class diagram.

ClassName Box Box
Properties length length : double
Methods width width : double
height height : double
Box() Box(| : double, w : double, h : double)
toString() toString() : string
volume() volume() : double
volumeDifference() volumeDifference(b : Box) : double

(a) (b) ()

3. For now, the syntax for a class diagram looks like this:

ClassName
prop1 : type
prop2 : type

meth1(paramName : type, ...) : returnType
meth2(paramName : type, ...) : returnType

4. The class diagram for the entire problem is shown below. Notice that we underline static methods and we use
a dashed arrow to indicate that the BoxCompare class depends on the Box class.

BoxCompare | — — > Box
main() length
createBox() width
height
Box()
toString()
volume()
volumeDifference()

Or:

BoxCompare |- - — >y Box

main() length : double
createBox() : Box width : double

height : double

Box(| : double, w : double, h : double)
toString() : string

volume() : double

volumeDifference(b : Box) : double

6

Encapsulation

1. Itis generally recommended that you have no public data fields in a class. The reason is that we don’t want to
allow a client program to be able to change values to anything they want. For instance, we wouldn’t want a
client program to change the curPrice to -22.33. So, we need to protect our state (data) so that it is not
corrupted. After all, we are designing a class that assumes that prices will always be positive. So, it makes
sense to not assume this, but to enforce this. We do this by providing a private instance variable and a public
setter (mutator):

private double curPrice;

public void setCurPrice(double price)

{
if (price >= 0.0)
curPrice = price;

}

As it stands, however, we cannot access curPrice from outside the object. If this access is required, then we
provide a getter (accessor) method. It allows a client (another program/class) to retrieve the value of a private
instance variable.

public double getCurPrice()
{

}

return curPrice;

This process of declaring private instance variables and providing public getters and setters is referred to as
data field encapsulation (or just encapsulation). Encapsulation in OO means that we are wrapping up our state,
to protect it. When we provide both a getter and a setter, we say that this is a read-write property because we
can both read the value of the property and change (write) the value of the property.

Even though we no longer have any public state variables, we still say that part of the state of the Stock class is
the current price property.

Read-only Properties — Sometimes, we want to have properties that can be read, but not written to. These are
called read-only properties. To implement this is very simple; we just omit the setter. This does raise the
question, how does the property ever obtain a value. One common way is through the constructor. Consider
an employee that has an ID. We may want to give an employee an ID when she is created, but once created,
the person’s ID can never change.

class Employee

{

private int id;

public int getld()
{

}

Employee(int idNum)

return id;

id = 1dNum;
3
3

We say that a property is immutable if it can never be changed. Here, id is an immutable property.

An immutable class is one where the state cannot be changed once the object is created. In other words, all
data fields are private and there are no setters. Why would we want to do such a thing? The answer is simply
protection. It will be a long time (several classes), probably, before the full implications of immutability are

understood.

Local Variables, Precedence, and this

1. A private or public variable in a class is visible anywhere in that class: in the constructor, public or private
methods, or used in expressions in the declaration of other variables. Variables can be declared inside
methods in a class and these are called local variables. If a local variable has the same name as a class variable,
then it has precedence. For instance, consider this class:

class A

{

private int X;

public AQ
{

}

public void dolt(int val)
{

X = 0;

int x;
x = val;

}

public int getX() { return x; }

If we run this test code,
A a = new AQ;
a.dolt(10);

System.out.printin(a.getX());

We print the value 0. So, we see that the local variable took precedence over the class variable.

If we want the class variable to take precedence, we use the keyword, this. In the example above, if we wanted
to use the class variable, x then we could refer to it as this.x:

public void dolt(int val)
{

int x;
this.x = val;

}

Which would display the value 10 with the test code above. We frequently see this when we write setters and
constructors.

public void setX(Int X)
{

}

this.x = X3

Some programmers will use this for every use of the class variable to make a consistent differentiation
between class variables and local variables. In a similar way, you can also use this to refer to an instance
method. For example, suppose we wanted to provide a setter that only updates the value of the private
variable if the new value was greater than the current value. Either of these two examples is ok:

public void setX(int x)
{
if(x > getx(Q))

this.x = Xx;

or
public void setX(int x)
{
iT(x > this.getX())

this.x = X;

}

More formally, this refers to the instance that invoked a particular method.

10

Calling other Constuctors
1. The keyword this can also be used inside a constructor to invoke another constructor in the same class. For
instance we may want a Circle class that has a constructor that makes a circle with a specified radius. We may

also want a constructor that make a default circle of radius 1.

class Circle

{
private double radius = false;
private boolean defaultCircle;
public Circle(double radius)
{
this.radius = radius;
}
public Circle(Q)
{
this(1.0);
this.defaultCircle = true;
s
¥

Note that when the default constructor is called:
Circle c = new Circle();

it immediately calls the constructor that takes a double as an argument, passing it a value of 1.0. If this
technique is used, this(...) must be the first statement in the constructor. Other statements may follow.

11

More about Constructors

2. A constructor is responsible for creating an object. It may or may not require parameters. A constructor is not
required. This is valid code:

class A
i

int x;
b

No constructor is specified here, but the null constructor is assumed to be present. The null constructor is

public AQ {}

So that class A below is the same as class A above:

class A

{

int x;

public AQ {}
by

3. Wecan also supply a constructor that takes an argument:
class A
{

int x;

public AC Int x)
{

}

this.x = X;
by
However, in this particular case, this is allowed:
A a = new A(3);
and this is not:
A a2 = new AQ;
because if any constructor is specified, then there is no null constructor. It will generate this compile error:

Constructors. java:14: cannot find symbol
symbol : constructor A(Q)
location: class A
A a2 = new AQ;
N

12

In this situation, if a null constructor was also needed, then it would need to be explicitly defined:

class A

i
int x;

public AQ {3}

public AC int x)
{

}

this.X = X;

Object Oriented Methodology

1.

A class is a template for making objects.
An object (instance) has:
a. Identity — It is unique. It can be distinguished from other objects.
b. State — The things that it remembers.
c. Behavior — The things that it can do
d. Interface — The messages it can respond to.
What is identity? Consider this class:
class Stock
double price;
public Stock(Q)

{

price = 0.0;
by
+

Now, consider the creation of two stock objects (two instances of the Stock class):

Stock s1
Stock s2

new Stock();
new Stock();

Note that s1 and s2 are references to two distinct objects. The objects themselves occupy different physical
spaces in memory. Though s1 and s2 are technically references to the actual objects, it is convenient to refer to
them as the objects themselves. In other words, we may say, “the s1 object,” as opposed to, “the object that
s1 refers to.”

Note, for these two particular objects, at this time, they have identical state (explained next).
13

What is state? It is the information that is stored with each object. It is any information that characterizes an
object, attributes of an object, properties that an object has. Some of the state may be private and some may
be public. Public information is available from outside an object, from a calling method. In the example above,
the state of a Stock object is the price and it is public (by default).Thus, a calling program can directly access
the public state:

Stock s1 = new Stock();
System.out.println(sl.price);
Private information is available only inside an object. Consider this class:

class Stock

{
private String name;
double price;
public Stock(String n)
{
price = 0.0;
name = n;
}
}

This class (or an object created from this class) has name and price for it’s state. Note that name is private and
price is public. The fact that name is private means that it is not accessible from outside the object that
contains it. In other words, the following code is not allowed. It generates a compile error:

Stock sl1 = new Stock(“Sun”);
System.out.printin(sl.name);

Notice that name can be used inside the object. In the example above, it is used in the constructor (copied
below):

public Stock(String n)
{

price = 0.0;
name = n;

}

In this particular example, the name property is not very useful. We store it when the object is created, but it
has no other use. We’ll see more about this later.

An important part of OO modeling is deciding whether variables need to be public or private.

14

What is behavior? These are the things that an object can do, the actions it can perform, responsibilities that
the object has. For instance, a Stock may have the ability to update its price. We implement a behavior in Java
with a method. Thus, the Stock class has an updatePrice() behavior (method) shown below and also a
percentDifference() method.

class Stock

{

doublle curPrice;
double prevPrice;

Stock(doublle cPrice)
{

curPrice = cPrice;
prevPrice = 0.0;

}

public void updatePrice(double price)

{

prevPrice = curPrice;
curPrice = price;

}

double percentDifference()

{
}

return (curPrice-prevPrice)/prevPrice * 100.0;

}

A class can have many behaviors and each one is either public or private. A public behavior (method) can be
invoked from the outside (calling method) by using the dot operator:

Stock sl1 = new Stock(22.0);
sl.updatePrice(33.0);

double d = sl.percentDifference();

We can also have private methods which are sometimes called helper methods. They are only accessible inside
an object and are used to help a public method carry out its task. For instance, suppose that we wanted to
ensure that prevPrice is greater than 0 (otherwise we’ll have a run-time error in the previous code). We might
implement the Stock class as shown below:

15

class Stock

{
double curPrice;
double prevPrice;
Stock(double cPrice)
{
curPrice = cPrice;
prevPrice = 0.0;
}
public void updatePrice(double price)
{
previousClosingPrice = currentPrice;
currentPrice = price;
}
double percentDifference()
if (isvalidPrevPrice ())
return (curPrice-prevPrice)/prevPrice * 100.0;
else
return 0.0;
}
private boolean isValidPrevPrice()
{
return (prevPrice > 0.0);
}
}

Notice that we use the private helper method, isValidPrevPrice() to carry out the responsibility of the public
behavior, percentDifference.

An interface for a class (or object) is the set of public members (public fields and methods). In other words, the
interface specifies exactly what messages can be sent to an object from the outside. Thus, a programmer who

is using a class is usually only interested in the public interface for the class because those are the only things it
can use. When we refer to an interface, we almost always mean the public interface.

We sometimes say that an object can receive messages. This is just another way that we can refer to using an
objects properties and methods. In other words, a message asks the receiving object to respond in some way.
A message might ask for the value of the state:

Stock s1

new Stock(22.33, 33.44);

double p sl.curPrice;

Or to carry out a responsibility (invoke a behavior):

double d = sl.percentDifference();

16

