Chapter 6 — Arrays, Part D — 2d Arrays and the Arrays Class
Section 6.10 — Two Dimensional Arrays
1. The arrays we have studied so far are one-dimensional arrays, which we usually just call arrays. Two-

dimensional (2d) arrays are used to model (represent) a table of information, with rows and columns. For
example, sales figures for one week are stored in a table like this:

Day of Week
Mon Tue Wed Thu Fri Sat Sun
Valdosta 56.22 72.42 38.23 51.91 47.23 52.34 42.35
Store Waycross 54.37 74.67 34.57 59.85 41.48 58.89 38.47
Location Douglass 58.87 81.08 37.83 53.42 53.93 57.73 43.58
Quitman 55.76 78.69 39.64 54.16 51.58 58.58 39.83

We notice that the table has 4 rows and 7 columns of data. In Java, we can create this table

double[][] sales;
sales = new double[4]][7];

Which we can think of like this:

Column Index (dayOfWeek)
0 1 2 3 4 5 6

0| 56.22 | 72.42 | 38.23 | 5191 | 47.23 52.34 42.35
Row Index | 1| 5437 | 74.67 | 34,57 | 59.85 | 41.48 58.89 38.47
(location) 2| 58.87 | 81.08 | 37.83 | 53.42 | 53.93 57.73 43.58
3

55.76 | 78.69 | 39.64 | 54.16 | 51.58 58.58 39.83

We see that there are two indices on a 2d array. We can think of the first as designating the row and the
second as designating the column (when we are dealing with a rectangular array as shown above). Thus, to
access individual elements we write:

sales[row][col]
0 < row < sales.length
0 < col < sales[0].length

The expression for the number of columns, sales[0].length is only valid for a rectangular array. This notation
will be explained later.

For example:
sales[2][3] // 53.42
sales[3][2] // 39.64

2.

You can also create a 2d array initializer:

int[][] scores =
{ {87, 73, 91 },
{ 84, 95, 62 },
{92, 95, 99 },
{78, 54, 79 } };:

Consider the array we previously considered.

Column Index (dayOfWeek)
0 1 2 3 4 5 6

0| 56.22 | 72.42 38.23 51.91 | 47.23 52.34 42.35
RowIndex | 1| 5437 | 74.67 | 34,57 | 59.85 | 41.48 58.89 38.47
(location) 2 | 58.87 | 81.08 | 37.83 53.42 53.93 57.73 43.58
3

55.76 | 78.69 | 39.64 | 54.16 | 51.58 58.58 39.83

Notice that the first row is an (1d) array. Thus, we say that scores[0] is an (1d) array. Similarly, each row can be
thought of as a 1d array: scores[0], scores[1], scores[2], scores[3]. Occasionally, we may pull of a row from a 2d
array.

double[][] sales;
sales = new double[4][7];

double[] salesRow = sales[0];

Thus, we see that a 2d array, is an array of arrays, that a 2d array is a 1d array whose elements are each a 1d
array (a row), that a 2d array is a 1d array whose elements are the 1d arrays that represent the rows. Thus,
sales is a array whose elements are the arrays: scores[0], scores[1], scores[2], scores[3].

The total number of rows in a 2d array is given by: scores.length, which in the case above is 4. Each row in the
scores array has the same number of columns, which can be found by:

Row Number of Columns Value
0 scores[0]-length 3
1 scores[1]-length 3
2 scores[2].l1ength 3
3 scores[3].l1ength 3

Processing Rows
1. Toloop through all the cells in a table, top-to-bottom (down the rows), left-to-right (across the columns):

/7 i row = location
/7 3 column = day of week

for(int 1=0; i<sales.length; i++)

{
for(int jJ=0; j< sales[i].length; j++)

{

}
System.out.printin(Q);

System.out.print(sales[i][j] + " ");

}

for(int[] row : sales)

or:

for(int val : row) System.out.print(val + " ");
System.out.printin();

}

2. We can also think of this as a row-based processing of the 2d array. Notice that the outer loop controls the
rows while the inner loop controls the column. So, using the approach above, the outer loop specifies a
particular row and then the inner loop iterates over the columns in that row.

Example 1
Write a method which returns an array of the totals for each store for the week.

public static double[] calcStoreTotals (double[][] sales)

{
double[] tots = new double[sales.length];

for(int loc=0; loc<sales.length; loc++)

{
for(int day=0; day<sales[O0].length; day++)

tots[loc] += sales[loc][day];
¥
¥
return tots;

}

We can call this method with code like:

double[][] sales;
sales = new double[4]][7];

double[] totals = calcStoreTotals(sales);

Processing Columns

1. We can also do a column-based processing. For example, we might want to compute the totals for each day,
across all stores (e.g. add up the values in each column). To do this, we will let the outer loop control the
columns while the inner loop controls the rows. So, using this approach, the outer loop specifies a particular
column (day) and then the inner loop iterates over the rows (locations) in that row.

// 1 = row = location

// § = column = day of week

for(int col=0; col<sales[0].length; col++)

{
for(int row=0; row<sales.length; row++)
{

System.out.print(sales[row][col] + " ");

}
System.out.printin();

}

Example 2

Write a method which returns an array of the totals for each day of the week.

public static double[] calcDailyTotals (double[][] sales)

{ double[] tots = new double[sales[0]-length];
for(int day=0; day<sales[0].length; day++)
{ for(int loc=0; loc<sales.length; loc++)
tots[day] += sales[loc][day];
}
) return tots;

Example 3

A square array (matrix) is one where the number of rows and columns is the same. Assume you have a square
matrix. Write a method which returns the sum of the elements along the main diagonal

public static double calcMainDiagTotal (double[]1[] matrix)
{
double total = 0;

for(int 1=0; i<matrix.length; i++)
total += matrix[i][i1];

return total;

}

Example 3

A square array (matrix) is one where the number of rows and columns is the same. Assume you have a square
matrix. Write a method which returns the sum of the elements along the main diagonal.

public static double calcMainDiagTotal (double[]1[] matrix)

{
double total = 0;

for(int 1=0; i<matrix.length; i++)
total += matrix[i][i];

return total;

}

Example 4

Assume you have a square matrix. Write a method which returns the sum of the elements along the off diagonal.

public static double calcOffDiagTotal (double[][] matrix)

{
double total = 0;

for(int col=0, row=matrix.length-1; col<matrix.length; col++, row--)
total += matrix[row][col];

return total;

Example 5
Write a method that determines if a 2d arrays is square.

public static boolean isSquare (double[][] matrix)

{
int nRows = matrix.length;
for(int row=0; row<nRows; row++)
iT(nRows = matrix[row].length)
return false;
return true;
3

Example 6

Write a program to read student names and test scores from the user. Prompt for the number of students and the
number of test scores. Print the names followed by the scores for that student.

public static void main(String[] args)

{
String[] students;
int[][] tests;
students = buildStudentsArray();
tests = buildTestsArray(students.length);
getStudentsAndScores(students, tests);
printStudentsAndScores(students, tests);
}
public static String[] buildStudentsArray()
{
int numStudents;
Scanner in = new Scanner(System.in);
System.out.print("How many students are there?");
numStudents = in.nextInt();
String[] s = new String[numStudents];
return s;
}
public static int[][] buildTestsArray(int numStudents)
{
int numTests;
Scanner in = new Scanner(System.in);
System.out.print("How many tests are there?");
numTests = in.nextInt();
int[1[] tests = new int[numStudents][numTests];
return tests;
}

public static void getStudentsAndScores(String[] names, int[][] scores)
{

Scanner in = new Scanner(System.in);

for(int i=0; i<scores.length; i++)

{
System.out.print("What is student " + (i+1l) + ""s name?");
names[i] = in.next();
for(int j=0; j<scores[i].length; j++)
{
System.out.print("What is test score " + (+1) + "?");
scores[i][J] = in.nextInt();
}
}

}

public static void printStudentsAndScores(String[] names, int[][] scores)
{

for(Int 1=0; i<scores.length; i++)

¢ System._out._print(names[i] + ": ");
for(int j=0; j<scores[i]-length; j++)
¢ System.out.print(scores[i][j] + = ™);
}
System.out._printin(Q);
}

Jagged Arrays
1. Since a 2-d array is an array of arrays, the number of columns can be different for each row. For instance,

Columns
(0] [l 2] (3]
o] [87 [73 [58 [91 |
[1] [84 |95 [62
2] [92 |95
3] |78

Rows

This is called a jagged array (book says ragged). You can create one with an array initializer:

int[][1 JaggedArray =
{ {87, 73, 58, 91 },
{ 84, 95, 62 },
{ 92, 95 },
{78} };

for(int i=0; i<jaggedArray.length
System.out.print(jaggedArray[i].length + “, “)

---—>4, 3, 2, 1
2. You can also create one with code like this (for example);

int[][1 JaggedArray;

JaggedArray = new int[4][];

jJaggedArray[0] = new int[4];
jJaggedArray[1l] = new int[3];
jJaggedArray[2] = new int[2];
jJaggedArray[3] = new int[1];

3. Jagged arrays are very useful. Suppose you wanted to write a program so that a professor could record the
final average for each student in each of her classes. Naturally, the number of students in each class would be
different.

Student
(0] f1] (2] (31 [4 [5]

o] |87 [73 |58 |91
Class [1] 84 95 62
2] |92 |95 |88 |69 [83 |74 |

Example 7
a. Problem: Write a program that allows a professor to enter the grades for students in each of his classes.
b. Algorithm — First Pass:

Get number of classes
Loop over number of classes
Get number of students in current class
Loop over number of students in current class
Read score

c. Algorithm — Second Pass:

Get number of classes
Create array specifying number of classes (rows)
Loop over number of classes
Get number of students in current class
Create 1d array of students for current class (specify columns for current row)
Loop over number of students in current class
Read score into array

d. Code

public static void main(String[] args)

{

int numClasses, numStudents;
int[][] tests;

Scanner in

System.out.print(""How many classes do you have?");

= new Scanner(System.in);

numClasses = in.nextInt();

tests

new int[numClasses][1;

for(int 1=0; i<numClasses; i++)

{

System.out.print("How many students in class " + (i+l) +

)

)

numStudents = in.nextint();

tests[i] = new Int[numStudents];

for(int j=0; j<numStudents; j++)
{

}

System.out.print("What is final Average for student

+ (J+1) + " in class " + (i+1) +"? ");

tests[i][J] = in.nextInt();

printFinalAverages(tests);

}

public static void printFinalAverages(int[][] scores)

{

for(int 1=0; i<scores.length; i++)

{ System.out.print(“Class " + (i+l1) + ": ");
for(int j=0; j<scores[i].length; j++)
¢ System.out.print(scores[i]l[j] + " ");
3

y System.out.printin(Q);

10

The java.util.Arrays Class

The documentation for the java.util.Arrays classs is found using the Java API (application programming interface)
(see link on website under “Links”).

The Arrays class has several useful, static methods: sort, binarySearch, toString, equals. As an example, consider this
code:

int[] scores = {92, 83, 87, 43, 62, 97, 77};
int[] scores2 = {92, 83, 87, 43, 62, 97, 77};
System.out.printIn("scores '
System.out.printIn("scores2

+ Arrays.toString(scores))
+ Arrays.toString(scores))

System.out.printIn("Are scores & scores2 equal? " +
Arrays.equals(scores, scores2));
Arrays.sort(scores);
System.out.printIn("scores, sorted = " + Arrays.toString(scores));
System.out.printIn("Are scores & scores2 equal? " +
Arrays.equals(scores, scores?));

int[] keys = { 42, 43, 44, 53, 62, 65, 77, 79, 83, 85, 87, 90, 92, 95,

97, 100 };
for(int key : keys)
{
System.out.printIn("Arrays.binarySearch(scores, " +
key +
(2]) - (2] +
Arrays.binarySearch(scores, key));
}
Output
scores = [92, 83, 87, 43, 62, 97, 77] | Arrays.binarySearch(scores, 53) = -2
scores2 = [92, 83, 87, 43, 62, 97, 77] | Arrays.binarySearch(scores, 62) =1
Arrays.binarySearch(scores, 65) = -3
Are scores & scores2 equal? true Arrays.binarySearch(scores, 77) = 2
Arrays.binarySearch(scores, 79) = -4
scores, sorted = Arrays.binarySearch(scores, 83) = 3
[43, 62, 77, 83, 87, 92, 97] Arrays.binarySearch(scores, 85) = -5
Arrays.binarySearch(scores, 87) = 4
Are scores & scores2 equal? false Arrays.binarySearch(scores, 90) = -6
Arrays.binarySearch(scores, 92) =5
Arrays.binarySearch(scores, 42) = -1 | Arrays.binarySearch(scores, 95) = -7
Arrays.binarySearch(scores, 43) = 0 | Arrays.binarySearch(scores, 97) = 6
Arrays.binarySearch(scores, 44) = -2 | Arrays.binarySearch(scores, 100) = -8

11

