Chapter 6 — Arrays, Part B — Searching for items in an Array
Linear Search

A common task in programming is that you need to search for something in an array. If there is no ordering on the
values (i.e. they are not sorted), then we generally do a linear search. Suppose you have an array of test scores and
you want to see if the test score 88 is in the array. The value that is sought is sometimes referred to as the key. This
version of the linear search is very simple: iterate over the values in the array, testing each one to see if it equals the
key. It is common for such a method to return the index of the position if the search was successful and -1 if the
search was not successful. Below is a method that does a linear search for a key.

public static int linearSearch(int[] list, int key)

{
for(int i=0; i<list.length; i++)
{
if(key == list[i])
return i;
}
return -1
¥
Example 1

Of course, we can think of many variations of this algorithm. For instance, suppose that we want to find the index of
the value that is closest to the key.

public static void main(String[] args)

{
int[] scores = { 78, 84, 88, 56, 69, 92, 89, 97 };
int key = 48;
index = linearSearchClosest(scores, key);
System.out._printIn(index + ", " + scores[index]);
}
public static int linearSearchClosest(int[] list, int key)
{
int distance, minDist = 1000, keyForMin = -1;
for(int 1=0; i<list.length; i++)
{
distance = Math.abs(list[i] - key);
ifT (distance < minDist)
keyForMin = 1i;
minDist = distance;
}
}
return keyForMin;
}

Example 2

Suppose that we want to find the index of the value that is closest to the key, but less than the key?

a. Analysis:

vals— 56 73 38 51 33 47

Key Index

46 2

58 0

22 -1

100 1
b. Algorithm:

Loop over list
IF list[i] < key
Calculate distance from key
IF distance < minDistance
Update minDistance
Remember current index

Return index

c. Code:
public static int linearSearchLessThan(int[] list, int key)
{
int distance, minDist = 1000, keyForMin = -1;
for(int i=0; i<list_length; i++)
if (list[i] < key)
{
distance = key - list[i];
iT (distance < minDist)
keyForMin = 1i;
minDist = distance;
}
}
}
return keyForMin;
}

Binary Search, Idea

a. Ifthe array is sorted (say, ascending), we can use a much faster algorithm, the binary search. The central idea is
to successively cut the list in half until you find the value. You start by determining if the key is in the lower or
upper half of the list. Suppose the key is in the lower half, then we discard the upper half of the list. Thus, the
new list is the old lower half. We continue this process until we have found the key or detected its absence.

b. Binary Search, Idea, Example 1
Searching for: key = 11

See if key is middle value, or is on right or left of middle value

low mid high
\! \! \’
0 1 2 3 4 5 6 7 8 9 10 11 12
2 4 7 10 | 11 | 45 | 50 | 59 | 60 [66 | 69 | 70 | 79

See if key is middle value, or is on right or left of middle value

low mid high
\! \ J
0 1 2 3 4 5
2 4 7 10 11 | 45

See if key is middle value, or is on right or left of middle value

low mid high

\ \ A
3 4 5
10 | 11 | 45

All done. key was found in position 4. It is customary for the binary search algorithm to return the index where
the key was found.

c. Binary Search, Idea, Example 2
Searching for: key = 62
See if key is middle value, or is on right or left of middle value
low mid high
\ J 2
0 1 2 3 4 5 6 7 8 9 10 11 12
2 4 7 10 11 | 45 50 | 59 60 66 69 70 79
See if key is middle value, or is on right or left of middle value
low mid high
\2 \’ 2
7 8 9 10 11 12
59 60 66 69 70 | 79
See if key is middle value, or is on right or left of middle value
low,
mid high
\2 \2
7 8 9 10 11 12
59 | 60 | 66 | 69 | 70 | 79
See if key is middle value, or is on right or left of middle value
low,
mid,
high
\!
8 9 10 11 12
60 | 66 | 69 | 70 | 79
high low
\! \2
8 9 10 11 12
60 | 66 | 69 | 70 | 79

low > high means that the key fall between them. Thus, if the key were to be inserted in the proper order,

it would be the 10™ element (index 9). It is customary for the binary search algorithm to return -10 in this

situation (for this example). The negative sign means that the key was not found. The value 10 means that if the
key were to be inserted in the (sorted) list, it would be the 10™ element and so would be located in the element

with index=9, 1isSt[9]. This begs the question as to why the method algorithm doesn’t just return -9.

Consider the next example.

d. Binary Search, Idea, Example 3
Suppose that we are searching for the key = 2. What would the method return? Answer: 0
Now, suppose that we are searching for the key = 1. What would the method return?

See if key is middle value, or is on right or left of middle value

low mid high
2 \2 \2
0 1 2 3 4 5 6 7 8 9 10 11 12
2 4 7 10 | 11 | 45 | 50 | 59 | 60 | 66 | 69 | 70 | 79

We see that Jow contains the index of the position where the key belongs, if the key was not found. So, we add 1
to the value of low and negate it to take care of the case when the key belongs in position 0. Thus, if binary
search returned -1, this would mean that the key was smaller than any element in the list and if the key was
inserted into the list, it belongs in the 1* element, with index 0.

Binary Search, Algorithm
a. First pass:
Initialize low=0, high=list.lenth-1

While low <= high
Calculate mid=(low+high)/2

IF key = mid

Return mid
ELSE IF key < mid

high=mid-1
ELSE

low=mid+1

Return -(row+1)
b. Second pass:

Initialize low=0, high=list.lenth-1
While low <= high
Calculate mid=(low+high)/2
IF key < list[mid]

high=mid-1
ELSE IF key > list[mid]

low=mid+1
ELSE

Return mid

Return -(row+1)

Binary Search, Example 2

searching for: key = 62

initialize: low = 0; high = list.length-1

while (high >= low)

calculate: mid = (low+high)/2

// true,

// mid = (0+12)/2=6

12 >= 0

low mid high
\! 2 2
0 1 2 3 4 5 6 7 8 9 10 11 12
2 4 7 10 11 | 45 50 | 59 60 | 66 | 69 70 | 79
if (key < list[mid]) // false
high = mid — 1;
else 1T (key > list[mid]) // true, 62 > 50
low = mid + 1 // low = 6+1 = 7
while (high >= low) // true, 12 >= 7
calculate: mid = (low+high)/2 // mid = (7+12)/2 = 9
low mid high
\ 2 2
7 8 9 10 11 12
59 | 60 | 66 | 69 | 70 | 79

if (key < list[mid]

high = mid — 1;

)

// true, 62 < 66

// high = 9-1

while (high >= low)

calculate: mid = (low+high)/2

// true, 8 >= 7

// mid = (7+8)/2 = 7

low,
mid high
\’ \!
7 8 9 10 11 12
59 | 60 | 66 | 69 | 70 | 79
if (key < list[mid]) // false
high = mid — 1;
else 1T (key > list[mid]) // true, 62 > 59
low = mid + 1 // low = 7+1 = 8
while (high >= low) // true, 8 >= 8
calculate: mid = (low+high)/2 // mid = (8+8)/2 = 8
low,
mid,
high
\2
8 9 10 11 12
60 | 66 | 69 | 70 | 79

it (key < list[mid])
high = mid — 1;
else if (key > list[mid])

low = mid + 1

while (high >= low)

return —low-1

// false

// true, 62 > 60

// low = 8+1 = 9

// false, 8 >= 9

// return -9-1 = -10

Thus, the binarySearch method returns -10. Again, the negative sigh means that the key was not found. The value 10
means that if the key were to be inserted in the (sorted) list, it would be the 10" element and so would have be
located in Fist[9].

Example 3

a. Problem - Suppose that we want to modify the binary search algorithm so that it if the key is not found, it
returns the position of the element that is closest to the key. For the example below, if we were searching for
key=62, the binary search will return -10 as we saw before. With this new algorithm, we would like it to return -
9, since list[8]=60 is closer to 62 than list[9]=66.

low mid high
\! J 2

0 1 2 3 4 5 6 7 8 9 10 11 12

2 4 7 10 11 | 45 50 | 59 | 60 | 66 | 69 | 70 | 79

b. Analysis:

The binary search algorithm will not change, except at the very end. Remember that low>high if the item is not
found and that the key is between high and low:

list[high] < key < list[low]
Thus, we just need to calculate the distance between key and the two bounds and choose which one is closer.
c. Algorithm:
Initialize low=0, high=list.lenth-1
While low <= high

Calculate mid=(low+high)/2
IF key < list[mid]

high=mid-1
ELSE IF key > list[mid]

low=mid+1
ELSE

Return mid

IF list[low] is closer to key
Return —(row+1)
ELSE
Return —(high+1)

d. Implementation — We would implement the last part this way:

int dLow = list[low] — key;
int dHigh = key - list[high];

if (dLow < dHigh)
return —low-1;
else
return —-high-1;

