Chapter 5 - Methods

Sections Pages Review Questions | Programming Exercises
5.1-5.11 142-166 1-18 2-22 (evens), 30

Method Example
1. Thisis of a main() method using a another method, f.

public class FirstMethod

{
public static void main(String[] args)
{
double x= -2.0, y;
for (int 1 = 1; 1 <= 5; i++)
{
y = f(x);
System.out.printf("%.3F ", y);
X += 2.0;
}
}
public static double f(double x)
{
double y = Math.exp(-x) * Math.cos(x/2);
return y;
¥
¥

Method Introduction

1. Methods are your friends; they help you when you need something done. Methods are a way to wrap up (group
together) some repetitive code (or code that simply belongs together), put it in a special place, give it a name,
and then be able to use it.

2. An Example: Developing and Using a Method

a. Suppose that we want to read in the total sales from two stores for two weeks and then display the top
sales amount for week 1, week 2, and overall.

Input:

Store 1 Store 2
Week 1 | 483 992
Week 2 | 1022 512
Output:

Week 1 top sales: 992
Week 2 top sales: 1022
Overall top sales: 1022

b. To think about this problem further, let’s define some variables:

salesl weekl = sales at store 1 in week 1
sales2_weekl = sales at store 2 in week 1
salesl week2 = sales at store 1 in week 2
sales2_week2 = sales at store 2 in week 2
top_weekl = top sales in week 1
top_week2 = top sales in week 2

top = top sales overall

c. Algorithm 1:

Read salesl_weekl, sales2_week1 Do you see repetitive code? Where? When we
see repetitive code, methods can be used to
IF salesl_weekl > sales2_week1 simplify things.
top_weekl = salesl_week1
ELSE \ How many times does it appear?

top_weekl = sales2_week1

‘ What makes each occurrence different?

Print top_week1

Does it make sense to group together similar
Read salesl week2, sales2_week2 code? How do we do that?

IF salesl _week2 > sales2_week2
top_week2 = salesl_week2
ELSE
top_week2 = sales2_week2

Print top_week2

IF top_weekl > top_week2
top = top_weekl

ELSE
top = top_week2

Print top

d. An Analogy:
Suppose that you need to paint several houses that you own. To accomplish this:

Buy yellow paint
Go to 2112 Howser St
Paint House

Buy maroon paint
Go to 3842 Arnsley Lane
Paint House

Buy gray paint
Go to 2337 Northlake Ave
Paint House

However, you have a friend who paints houses. Your friend doesn’t care what the color is, to him it is just a
color. Likewise, your friend doesn’t care what house it is, to him it is just a house with a location. In other
words, your friend has a paintHouse ability (method), just tell him the color and location and he’ll take care
of the rest. In pseudo-code, we could express this idea like this:

paintHouse (color, location)

{
Buy color paint
Go to location
Paint house

}

color and location are called parameters. When we detect that we could use a method, one of the first
things we need to do is determine what the method needs to know to accomplish its task.

Now, for you to paint your houses, you can use the paintHouse method and this greatly simplifies things. In
pseudo-code, we can express this (main) idea as:

friend.paintHouse(“yellow”, “2112 Howser St”)
friend.paintHouse(“maroon”, “3842 Arnsley Lane”)
friend.paintHouse(“gray”, “2337 Northlake Ave”)

Usually what happens, is that we (a) write a method, (b) test the method, (c) and then use the method to
solve a problem. Many times, we will have several methods (or more).

Notice that once we have tested a method, and it works, the method becomes a black-box. We no longer
care about the details of how the method accomplishes its task, just that it does it. In other words, we don’t
care where our friend buys the paint, or the brushes he uses, or how long it takes him. We just count on the
fact that, when called upon, our friend will paint the correct house with the correct color.

g.

Back to our problem about finding the top sales amounts. What could a friend do to help us? One thing is
read the test scores. After all, that is a bunch of repetitive steps, prompt the user, read the value (maybe
even validate the data). We have to do that 4 times, once for each store and each week, but the only thing
that is changing is the store number and the week number. Consider this method:

readScore(store, week)

Print(“What is the sales for “ + store + “ in week “ + week + “?”)
sales = Read value
Return sales

1

What else could a friend do for you in this problem? He could figure out which of two sales figures is larger.
Consider this method:

maxSales(vall, val2)

{
IF vall > val2
max = vall
ELSE
max = val2
Return max
1

So, our friend has greatly simplified the work we need to do. Consider this main method that uses (calls) the
methods we have written:

main()

{

salesl weekl =readSales(1, 1)
sales2_weekl =readSales (2, 1)

top_week1 = maxSales (salesl_weekl, sales2_week1)
Print top_weekl

salesl week2 =readSales (1, 2)
sales2_week2 = readSales (2, 2)

top_week2 = maxSales(salesl_week2, sales2_week2)
Print top_week2
top = maxSales(top_week1, top_week?2)

Print top

3. Let’s code the example above.
import java.util.Scanner;

public class Sales

{
public static void main(String[] args)
{
doublle salesl weekl = readSales(1, 1);
double sales2_weekl = readSales(2, 1);
doublle top_weekl = maxSales(salesl weekl, sales2 weekl);
doublle salesl week2 = readSales(1, 2);
double sales2_week2 = readSales(2, 2);
doublle top_week2 = maxSales(salesl week2, sales2 week2);
double top_sales = maxSales(top_weekl, top week2);
System.out.printf("Top sales week 1: %.2F\n"" +
"Top sales week 2: %.2f\n" +
"Top sales overall: %.2f",
top_weekl, top_week2, top_sales);
by
public static double readSales(int store, int week)
{
Scanner s = new Scanner(System.in);
System.out.print("What is the sales for " +
store + " in week " + week + 7");
double sales = s.nextDouble();
return sales;
¥
public static double maxSales(double vall, double val2)
{
double max = vall > val2 ? vall : val2;
return max;
by

Method Details

1.

Method and Signature Syntax. The general format for a method is (for now) is:

public static returnType methodName(dataType paramNamel, ...)
{

//statements
¥

The highlighted items are called the signature of the method. The signature of a method uniquely identifies a
method (more on this when we talk about method overloading). For now, the returnType is simply one of our
standard datatypes: int, double, boolean, String, etc. However, if a method doesn’t return anything, we use the
keyword, void.

A method can also have any number of parameters. These are values that we pass to the method when it is
invoked (called). They are used inside the method. When a method is called, the parameters become live (they
are placed on the stack. More on this later). Their values disappear when the method ends.
The body of a method is essentially a program, just as we have written before. In other words, in the body of a
method we must declare any variables we need and write our code. The parameters of a method are considered
variables that are already declared (they are declared in the parameter list for the method). In other words, we
can use them inside the method.
Method Invocation — We use a method by invoking it. Or, sometimes we say that we call a method. We can
invoke a method that returns a value in three different ways. Consider the maxSales method considered above.
This method returns a double.
a. The most common way to invoke such a method is:

double max = maxSales(vall, val2);
Sometimes we say that the variable, max, catches the value that is returned by the method.
b. We can also invoke a method like this:

System.out.print(maxSales(vall, val2));

c. We also can simply ignore the return value by invoking the method as a statement. We don’t do this very
often.

maxSales(vall, val2);
double max = maxSales(vall, val2);

d. We can also use the value returned by a method in an expression:

double x = 4.35 * maxSales(vall, val2) / 6.7;

e. Sometimes, we invoke a method using literals:
X = maxSales(223, 487);

3. Void Methods — Sometimes we have methods that don’t return anything. We call these void methods. They
simply do things for us. Example: write a method that prints, “hello”.

public static void main(String[] args)

// Call method three times.

print(Q);
print();
print();
3
public static void print()
{
System.out.printin(“"Hello™);
}
Note that we invoke a void method by simply treating it as a statement. Note, also, that this method has no
parameters.

4. Method Parameters — A method can have any number of parameters, including none. If a method has no
parameters, the signature might look like this:

public static void myMethod()

However, if there are parameters, each parameter must have a data type specified. In other words, we cannot
do this:

public static void myMethod(int X, y, z)
Instead, we must write:
public static void myMethod(int x, Iint y, int z)

5. Method Arguments — When we invoke a method, the values we pass to the method are called arguments.
Consider this method signature:

public static double getTax(double salary, boolean isMarried)
When we invoke this method:
double tax = getTax(sal, isMarried)
In other words, sal and isMarried are arguments. The arguments must agree with the method signature in order,

number, and compatible type. Notice that when we use variables for arguments, their names do not need to
match the names in the method signature (this will be explained next).

6. Call Stack — See the power point slides (or text) for a very, very important explanation of this concept. Also
discuss pass-by-value, the scope of variables, and local variables.

7. As far as the big picture goes, that is all there is to methods. At first, your text (and I) will tell you the method(s)
to write (their name, what they do, parameters, returns) and you’ll be responsible for writing that code in Java.
At this time, you’ll be learning the details of how write methods in Java. The next step is a bit of an art
(especially as problems become larger), learning when, where, and why to use methods. This is a part of
software design. Gradually, I'll quit telling you to write a program with some method(s). I'll go back to just
describing a problem and assume you will be using methods to implement a solution.

Method Examples 1

1. (a) Write a method that displays the factorial of a number. (b) Write a program that uses the method to display
the factorial of the first 10 integers.

2. (a) Write a returns the factorial of a number. (b) Write a program that uses the method to display the factorial of
the first 10 integers.

Method Overloading

1. We can define two (or more) methods with the same name. This is useful when we need to be able to handle
different types of arguments to a method. We have already used built-in methods in Java that are overloaded:

System.out.printin();
System.out.printIn("Hello™);
System.out.printin(14.32);
System.out.printin(7);

When we have two or more methods with the same name, we call this method overloading. Here, we say that
the println method is overloaded. These four different (although conceptually very similar) methods have the

same name, but different parameter lists. One accepts nothing, one a string, one a double, and one an integer.

Use the API to see what the different signatures for the printin method. http://java.sun.com/javase/6/docs/api/

The compiler looks at each method invocation and finds the method that matches the argument list in order,
number and type.

http://java.sun.com/javase/6/docs/api/

2.

Example: write a method, getGreeting that accepts a name and returns the greeting, “Hello, name.” Write an
overloaded version of getGreeting that accepts two names and returns the greeting, “Hello, namel and name2.”

public static void main(String[] args)

{
System.out.println(getGreeting("Dave™));
System.out.printIn(getGreeting("Dave', "Amber™));
¥
public static String getGreeting(String name)
{
String msg = “"Welcome, " + name;
return msg;
by

public static String getGreeting(String namel, String name2)
{

String msg = "Welcome, " + namel + ' & " + name2;
return msg;

}

Methods Calling Methods

1.

We can have methods call other methods. A lot of times we break problems down into cohesive methods that
call on one another to get the problem solved. A method is cohesive when it does one thing, it has a single
responsibility. The process of breaking a problem down into cohesive methods is called modularization.

In the example below, we have added a third getGreeting method, one that accepts a string and an integer. It
will return the greeting, “Hello name.” n times. It will do this by calling the method getGreeting(name). The
diagram below shows how calls are made to methods in the example.

main()

Y

getGreeting(string) [«
A

Y

getGreeting(string1, string2)

Y

getGreeting(string, int)

10

3. Code

public static void main(String[] args)

{
System.out.printIn(getGreeting(""Dave’™));
System.out.println(getGreeting("Dave', "Amber™));
System.out.printIn(getGreeting("Paul™, 4));

by

public static String getGreeting(String name)

{

String msg = “"Welcome, " + name;
return msg;

}

public static String getGreeting(String namel, String name2)

{
String msg = getGreeting(namel) + "\n" + getGreeting(name2);

return msg;

}
public static String getGreeting(String name, int n)
{

String msg = "'';

for(int 1=0; i<n; 1++)
msg += getGreeting(name) + ""\n";

return msg;

}

11

Ambiguous Invocation
1. Sometimes when methods are invoked, the compiler cannot find a unique match for a method based on the
argument list. In other words, there may be two or more possible matches. This is referred to as ambiguous

invocation. Ambiguous invocation is a compilation error.

public class AmbiguousOverloading

{
public static void main(String[] args)
{
System.out.printIn(max(1, 2));
System.out.printin(max(1d, 2));
System.out.printIn(max(1, 2d));
¥
public static double max(int numl, double num2)
{
return numl > num2 ? numl - num2;
ks
public static double max(double numl, Int num2)
{
return numl > num2 ? numl : num2;
ks
}
Examples

1. (a) Write a method that accepts an integer and returns a number with the digits reversed. In other words, if the
input to the method is 784, then the method should return 487. (b) Write a program to test your method.

12

You want to write a program that will print a function, f(x) = sin(x)*cos(2x). The user will specify the beginning,
ending, and increment to print the function using a loop (assume that the loop will always increment the value
of x). You’ll do this problem in two parts.

a. Consider this modularized algorithm for main():
read beg value
do
read end value
while (lisvValid(beg, end))
do
read incr value

while (risvalid(incr))

for(1=1; i<=numlterations(beg,end,incr); i++)

= £(x)

Study the pseudo-code above. Do not move forward until you understand it. Ask questions if you do not
understand.

b. You'll need these four methods:
public static boolean isValid(double beg, double end)

Determines whether the beginning and ending numbers are valid and prints an informative message
if not.

public static boolean isValid(double incr)
Determines whether the increment is valid.
public static int numlterations(double beg, double end, double incr)

Returns the number of iterations the loop will do, i.e. the number of times the function will be
printed.

public static void print(double x, double y)
Returns the number of iterations the loop will do, i.e. the number of times the function will be

printed.

I Figure out how these methods will work. This will take some thinking and some scribbling on paper.
II. Write these methods out by hand.

13

c. Code the problems:

import java.util.Scanner;

public class FunctionPrinter2

{
public static void main(String[] args)

{

double beg, end, incr;
Scanner s = new Scanner(System.in);

System.out.print("Enter beginning number: ");
beg = s.nextDouble();

do
{

System.out.print("Enter ending number: ');
end = s.nextDouble();

b
whille (Yisvalid(beg, end));
do
{
System.out.print("Enter increment: ');

incr = s.nextDouble();
3
while ('isvalid(incr));
double x = beg, Vy;

for(int i=1; i<=numlterations(beg,end,incr); i++)

{
y = F(C X);
print(X, y);
X += 1Incr;

}

14

public static boolean isValid(double beg, double end)
{
iT (end > beg)
return true;
else
{
System.out.printIn(""end” must be bigger than “beg®".");
return false;

}
}
public static boolean isValid(double incr)
{
if (incr > 0.0)
return true;
else
{
System.out.printIn("“increment® must be bigger than 0.);
return false;
}
}

public static int numlterations(double beg, double end, double incr)

{
return (int)((end-beg)/incr + 1);

}

public static double F(double x)

{
double y = Math.sin(x) * Math.cos(2*x);
return y;

}

public static void print(double x, double y)

{
System.out.printin(C'-————--—--—-—————- ")
System.out.printf(" x=%.2F, y=%.3f\n", X, v);
System.out.printIn("-—----—---—-————————— ");
System.out.printin('");

+

15

Method Summary

Methods are a way to reuse code. We write a method once, and put it in one place (e.g. a file on a server) and
we reuse it practically anywhere, anytime, as many times as we want: in a program, in another class, across a
network.

Methods are a way to organize code, to group code that is related. Real systems can have millions of lines of
code. We can’t have a million lines one-after-the-other; it would be impossible to read and understand. Many
times methods have just a few lines of code, rarely do they have more than 60.

Methods are a fundamental way of writing maintainable code. Sometimes we have the exact same block of code
in two or more places in a program. From the perspective of code maintenance, this is a nightmare: every
change requires the exact same change in multiple places. This is a very error prone way to maintain code. The
solution is to create a method which wraps up the common code and puts it in a single place. Then, we call the
method from the appropriate places in our code. Thus, a method is a structure that holds code which can be
called from a program (or another method).

The most important thing about methods is that they represent the encapsulation of behavior (or responsibility)
which is an integral part of the object-oriented programming paradigm. We will discuss this in Chapter 7.

Using the API to Investigate the Math Class

Let’s use the APl to see what the Math class is all about: http://java.sun.com/javase/6/docs/api/

PowerPoint

Cover PowerPoint slides for Chapter 5 in class.

More Examples

If time permits, another handout will be provided that gives additional problems we will work in class.

16

http://java.sun.com/javase/6/docs/api/

