Chapter 4 - Loops

Sections Pages Review Questions Programming Exercises

4.1-4.7,4.9-4.10 | 104-117,122-128 | 2-9, 11-13,15-16,18-19,21 2,4,6,8,10,12,14,18,20,24,26,28,30,38

Loops

Loops are used to make a program do something over and over, until some condition is met. For instance, we may
want to read and add test scores from the user until a 0 is entered. There are three kinds of loops in Java: for, while,
and do-while.

while Loop

1. The syntax for a while loop is:

while (continuation_condition)

// The body of the loop
statement(s);

}

Operation is simple, the while loop is like an if block that repeats over-and-over until the condition is false. When
the while statement is encountered for the first time, the continuation _condition expression is evaluated. If it is
true, the body of the loop is executed. This is referred to as an iteration. Next, execution returns to the while
statement and the continuation condition expression is evaluated again. This process repeats until the
condition_condition is false. Thus, there must be some way to change the value of the condition_condition inside
the body of the loop; otherwise, the loop would run forever. The number of times the code in the body of the
loop executes is referred to as the number of iterations. We will see examples of these things shortly.

So, the continuation_condition must be true for the loop to execute. When it changes to false, then the loop will
terminate.

2. Example — What value does this program print out? How many iterations did this loop make? What makes this
loop end? Now, suppose x=10 initially (instead of 0). Answer these questions again.

int x = 0;

while (x <= 3)
{

}

System.out.printin(x);

X++

3. An infinite loop occurs when the condition is , i.e. a loop that never terminates. Thus, we must make sure that
something inside the loop will eventually change the continuation_condition to false.

This is an example of an infinite loop, why?

int x = 0;

while (x < 10)
System.out.printin(x);

Sometimes, this infinite loop is useful:

while (true)
{

}

// Do something

However, this loop generates a compile error, “unreachable statement”. In other words, the compiler has
detected that the while loop is superfluous.

while (false)
{

}

// Do something

4. Example: Write a program that generates a random integer between 0 and 100. Have the user guess the number
until they figure it out. Provide informative messages along the way to indicate if their guess is too high or too
low.

a. Algorithm:

Generate a random number
While number has not been guessed correctly
Read guess
If guess = number
Print success message
Make sure loop terminates
Else If guess < number
Print “too low” message
Else
Print “too high” message
End If
End While

b. The code, also in the text is shown below:

int guess = 0;
int number = (int)(Math.random()*101);
boolean correctGuess = fTalse;

while (guess !'= number)

{

guess = scanner.nextInt();

ifT (guess == number)
System.out.println("You got i1t!”);
else 1T (guess < number)
System.out.printIn("Your guess is too low!™);

else
System.out.printIn("Your guess i1s too high!™);

}

Another way to terminate the loop above is:

int guess = 0;
int number = (int)(Math.random()*101);
boolean correctGuess = false;

while (! correctGuess)

{

System.out.print(""Guess a number between O and 100: ")

System.out.print(""Guess a number between O and 100: ")
guess = scanner.nextInt();
1T (guess == number)
{

correctGuess = true;

System.out.printIn("You got 1t!”);
else 1T (guess < number)

System.out.println("Your guess is too low!™);
else

System.out.printIn("Your guess i1s too high!™);

by

Suppose we want to print out how many guesses it took. How would we do this?

while Loop - Sentinel Value

1. Sometimes, especially when we are reading values from a user, we use a special value to signal the end of the
loop. In other words, we may have the user enter -1 to indicate that they don’t have any more data to enter.

This is called a sentinel value.

2. Example: Write a program to read test scores from the console. The user will enter -1 when they are finished
entering tests. Compute and display the average of the test scores.

a. Algorithm:

While user did not enter -1
s =read score
If score is not -1 then
sum +=s;
count++;
End If
End While
avg = sum / count
Print avg

b. Code:
int score = 0;
double sum = 0;
int count = O;

while (score I= -1)

{
System.out.print("Enter a test score or -1 to quit");
score = scanner.nextint();
if (score 1= -1)
{
count++;
sum += score;
be
}

double average = sum / count;
System.out.printin(average);

What happens when the user enters -1 immediately without entering any test scores? How would we fix this

program?

c. Another way to write the code:

System.out.print("Enter a test score or -1 to quit: ");
score = s.nextint();

while (score = -1)

{
count++;
sum += score;
System.out.print("Enter a test score or -1 to quit: ");
score = s.nextInt();

}

if (count > 0)

{
double average = sum / count;
System.out.printin(average);

}

else

System.out.printIn("No test scores entered");

do-while Loop

1. The syntax for a do-while loop is:

do
{

statement(s);

} while (continuation_condition)

This is the same as the while loop, except the continuation_condition is at the end of the loop instead of the
beginning. Thus, the body of a do-while loop always executes at least once.

When should you use a while loop or a do-while loop. First, mostly, people use a while loop over the do-while
just because it feels natural in the context of the problem. However, you can always use either approach.
Sometimes, however, a do-while loop is the natural thing to do. For instance, when we have some code (the
body of the loop) that must always be executed at least once.

2.

3.

Example: Prompt the user for an amount of money. Compute the amount of money at the end of one year
assuming 7% interest. Then, ask the user to enter 1 if they want to compute the value for another year or 0 if
they want to quit.

double value = 0.0;

Iint years = 0;
int again = 0;
System.out.print("Enter an amount of money: ");

value = s._.nextDouble();

do
{

years++;
value *= 1.07;

System.out.printf("After %d years you have $%.2f\n", years, value);
System.out.print("Compute for another year (l=yes, 0=no)? ");

again = s.nextInt();

} while (again == 1);

Example: What is the output of this code? Suppose x=10?
int x = 0;

while (x < 3)
System.out.printIn(x++);

do
System.out.printin(x++);
whille (x < 3);

for Loop

1. A for loop is useful when you know (or can compute) in advance how many times you want a loop to iterate. A
simplified syntax for a for loop is:

for (beginning; end; increment)

{
}

// The body of the loop

2. For example:
for(Int 1=0; i<5; i++)
System.out.printIn(i);

How many iterations does this loop execute? What is the scope of i?
How would you write this loop with a while loop?
int 1=0;
whille (1<5)
System.out.printin(i++);

A do-while loop?
int 1=0;
do

System.out.printin(i++);
whille (1<5);

3. A little more careful way to describe the syntax of the for loop is (can be generalized further) shown below. In
most situations, this version is appropriate.

for (index_initial_value; continuation_condition; index_increment)

// The body of the loop
by

4. Example, print out a table of the values of y = 2x2 — 4x + 1 for the positive integer values of x through 10.
for(iInt x=1; x<=10; X++)
System.out.printIn(x + , " + (2*Math.pow(X,2)-4*x+1));
Output

A WNPR
P~
N R
. O O
o o

5. Example, print out a table of the values of y = 2x? — 4x + 1 for the positive integer values of x from 10 down
to 1.
for(int x=10; x>=1; X--)
System.out.printIn(x + ", " + (2*Math.pow(x,2)-4*x+1));

Output

10, 161.0

9, 127.0

8, 97.0

7, 71.0

6. Example, print out a table of the values of y = 2x2 — 4x + 1 for the positive, odd, integer values of x from 1 to
11.
for(int x=1; x<=11; x+=2)
System.out.printIn(x + ", " + (2*Math.pow(X,2)-4*x+1));

Output

1, -1.0

3, 7.0

5, 31.0

7. Example, print out a table of the values of y = 2x% — 4x + 1 for x=1 to 3 by increments of 0.1

Tfor(double x=1; x<=2; x+=0.1)
System.out.printIn(x + ", " + (2*Math.pow(x,2)-4*x+1));

Output:
1.0, -1.0
1.1, -0.98
1.2000000000000002, -0.9199999999999999
1.3000000000000003, -0.8199999999999998
1.4000000000000004, -0.6799999999999993
1.5000000000000004, -0.4999999999999991
1.6000000000000005, -0.2799999999999985
1.7000000000000006, -0.019999999999998685
1.8000000000000007, 0.280000000000002
1.9000000000000008, 0.6200000000000028

Why doesn'’t it display for x=2.0? Warning: need to be very careful if using decimal numbers in the statements
for the for loop.

8. A solution to the preceding problem:

Output:

o Ul WNPEF O

NRPRRRRRRERRPRPR

double x;
for(Int 1=1; i<=11; i++)
{

x =1.0 + (1-1)*0.1;

System.out.printIn(x + ", " + (2*Math.pow(x,2)-4*x+1));

}

, -1.0

, —0.98

,» —0.9199999999999999

, —0.8199999999999998

, —0.6800000000000002

, -0.5

, —0.27999999999999936
.7000000000000002, -0.019999999999999574
-8, 0.28000000000000025
-9, 0.6200000000000001
.0, 1.0

Another way to write the loop:

for(int 1=0; 1<=10; i++)
{
X =1.0 + i*0.1;

System.out.printIn(x + , ' + (2*Math.pow(X,2)-4*x+1));
¥

9. Example, print out a table of the values of y = 2x? — 4x + 1 between two values specified by the user using
increments of 1.

System.out.print("Enter beginning value: ");
begin = scanner.nextint();

System.out.print("Enter ending value: ");
end = scanner.nextInt();

for(Iint i=begin; i<=end; i++)
System.out.printInC 1 + ", " + (2*Math.pow(i,2)-4*i+1));

What happens when you enter 3 & 1, respectively?

Nested Loops

1. We can have loops within loops. For example:

int k;
for(Iint 1=0; 1<3; 1++)
{
for(int j=0; j<3; j++)
{
k = 1*j;
System.out.printin(k);
}
}
Trace of program Output
_ 0
i j k
0 0 O g
1 0
2 0 0
1 0 0 1
1 1 2
2 2 0
2 0 0 2
1 2 4
2 4
2. Example:
for(Iint 1=0; 1<3; 1++)
{
for(int j=i; j<3; j++)
{
k = 1*j;
System.out.printin(k);
}
}
Trace of program Output
i j k 0
0 0 O 0
1 0 0
2 0 1
1 1 1 2
2 2
2 2 4 4

10

3.

4.

Example, Multiplication Table 1:
for(Int i=1; i<4; 1++)

Output:

WN -
o A~N

{

O o W

for(int j=1; j<4; j++)

{
K = i*j;
System.out.print(k + " ");

}
System.out.printin();

Example, Multiplication Table 2

System.out.print(" ")

for(int i=1; i<4; i++)

System.out.print(i + " ");

System.out.printin();
System.out.printIn("--—-—---—- ");

forC Int 1=1; 1<4; 1++)

{

System.out.print(i + " | ");

for(int j=1; j<4; j++)
{
k = 1*j];
System.out.print(k + " ");

}
System.out.printin(Q);

11

5. Example, Multiplication Table 3. Same as previous.

String multTable;

multTable = " -
for(int i=1; i<4; i++)
multTable += i + " '';
multTable += "\n-————————— \n"';
for(int i=1; i<4; i++)
{ multTable += i + " | ;
for(int j=1; j<4; j++)
{ multTable += (i*j) + " ';
) %ultTable += ""\n"';

System.out.printin(multTable);

6. Example. Suppose we want to print out this table using loops:

12345
1234
123
12

1

a. Analysis/Design

In a situation like this we need nested for loops. The outer loop will iterate over the rows. The inner loop will
iterate over the columns.

Notice that there are 5 rows. This means that we need an outer loop like this:

for(int row=1; row<=5; row++)

{
}

Now, think in terms of an algorithm. What do we need to do for each loop?

// Print row

For each row
Print spaces
Print numbers

12

Since the number of spaces is different for each row, and the number of numbers is also different for each
row, we can use two inner loops, one to print spaces and one to print the numbers. Notice that each
number takes up two spaces (the number and a space). So, let’s refer to 2 spaces as a blank.

For each row
For i=1 to number of blanks
Print blank
For i=1 to end number
Print number

Now, the tricky part: we need to figure out the number of blanks and the end number. Look carefully at the
example table that was given in the problem statement above and then consider this table:

Row Blanks Ending Number

ua b WN PR
H W NN O
= N Wb~ O;

Now, the really tricky part. We need an expression for the number of blanks so that we can use it as a
continuation_condition for the first inner loop. Consider: Blanks=Row-1. Verify this in the table above.

Now, we need to do the same thing for the ending number. Consider: Ending Number = 5 — (Row-1). Verify
this in the table above.

Finally, our algorithm looks like this:
Forrow=1to 5
For col=1 to row-1
Print Blank
For col=1 to 5-(row-1)
Print col
Code
// Loop over each row
for(Int row=1; row<=5; row++)
{
// Print blanks
for(int col=1; col<=row-1; col++)

System.out.print(" ");

// Print numbers

for(int col=1; col<=5-(row-1); col++)
System.out.print(col + " ");

System.out.printin();

13

break Keyword

1. The break keyword is used to break out of a loop (or switch statement). It transfers control to the next
executable line after the loop. This should only be used when it makes the code easier to understand. You can

always write code that doesn’t require a break.
2. Example —Suppose j=1, what is the output? j=27? j=5?
int sum = 0;

while(jJ <6)

{
sum += j;
iT(sum > 8) break;
J++;

¥

System.out.printIn(j + ", " + sum);

continue Keyword

1. The continue keyword is used to break out of the current iteration of a loop (or switch statement). It transfers
control to the end of the loop. This should only be used when it makes the code easier to understand. You can

always write code that doesn’t require a continue.
2. Example. Suppose j=1, what is the output? j=27?
sum = O;

while(J <6)

{
sum += j;
itC 3==2 |1l 3==8)
{
J+=2;
continue;
¥
J++;
¥

System.out.printIn(j + ", ™ + sum);

14

Confirmation Dialog

1. A confirmation dialog is a GUI element that allows the user to choose, Yes, No, or Cancel:

JOptionPane.showConfirmDialog(null, “Continue?");

Select an Option

H Continue?

Yes Mo Cancel

2. Usually we catch the response from the dialog so that we can make a decision in our program

int option;
option = JOptionPane.showConfirmDialog(null, "Continue?");

i1T(option == JOptionPane.YES_OPTION)

{
// Do something
}
else if (option == JOptionPane.NO_OPTION)
{

// Do something

}
else 1Tt (option == JOptionPane.CANCEL_OPTION)

{ // Do Something
}
3. A framework for allowing the user to run your program again:
do
{

// Do something
option = JOptionPane.showConfirmDialog(null, "Run again?”);

} while (option == JOptionPane.YES OPTION);

15

4. Example — Allow user to enter test scores until -1 is entered. Display the average and see if the user wants to run
the program again.

int score = 0;
double sum = 0O;
int count = 0O;

do
{

System.out.print("Enter a test score or -1 to quit: ");
score = s.nextInt();

while (score 1= -1)

{
count++;
sum += score;
System.out.print("Enter a test score or -1 to quit: ');
score = s.nextInt();
1

ifT (count > 0)
doublle average = sum / count;
System.out.println(average);
¥
else

{
}

option = JOptionPane.showConfirmDialog(null, "Run again?");

System.out.printIn("No test scores entered”);

} while (option == JOptionPane.YES OPTION);
There is a logic error in this program. What is it?
PowerPoint
Cover PowerPoint slides for Chapter 4 in class.

More Examples

If time permits, another handout will be provided that gives additional problems we will work in class.

16

