CS 1302 – Lab 8
Abstract Classes & Interfaces

This is a tutorial on abstract classes and interfaces. There are 3 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	Abstract Classes
	13.1-13.2

	2
	Interfaces
	13.5

	3
	The Comparable Interface
	13.6

To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Abstract Classes

In this stage we introduce the concept of an abstract class.

1. (Read, no action required).

a. An abstract class is one that defines methods and instance variables just like a regular class; however, it also defines some abstract methods. Abstract methods specify only the signature of a method, but no implementation. Thus, an abstract class is incomplete. You cannot create an instance of an abstract class but you can extend one. When you extend an abstract class you must implement the abstract methods.

b. Study the figure below and note the following:

· We use the abstract modifier to define an abstract class.
· We use the abstract modifier to define the signature of an abstract method.
· The Dog subclass must implement the abstract method, makeSound.

[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\04\a1.jpg]

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\04\a2.jpg]In class, we will discuss why we use abstract classes. In short, it is a way that we can generalize. Suppose we want to model birds and dogs; they have some things in common, for example they both have a name and they both can makeSound. Thus, we might define a superclass Animal to define these as common attributes as shown in the class diagram on the right. However, the way birds and dogs makeSound is different. Thus, we define makeSound as an abstract method and the Animal class as an abstract class. In UML, we indicate an abstract class and abstract methods using italics (when drawing by hand you can use double-quotes).

2. Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.
b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use.
c. Create a Project – Create a Java project with the name, lab08_lastName, e.g. lab08_gibson.

3. Create some animals – Do the following:

a. Create a package named animals.
b. Create a class named Animal and replace everything in the class (except the package statement at the top) with:

public abstract class Animal {
	private String name;

	public Animal(String name) {
		this.name = name;
	}

	public String getName() {
		return name;
	}

	public abstract String makeSound();
}

c. Create a class named Dog and replace everything in the class (except the package statement at the top) with:

public class Dog extends Animal {
	public Dog(String name) {
		super(name);
	}

	public String makeSound() {
		return "Bark";
	}
}

d. Create a class named Bird and replace everything in the class (except the package statement at the top) with:

public class Bird extends Animal {
	public Bird(String name) {
		super(name);
	}

	public String makeSound() {
		return "Chirp";
	}
}

e. Create a class named Driver and replace everything in the class (except the package statement at the top) with:

public class Driver {
	public static void main(String[] args) {
		Dog d = new Dog("Wu");
		String msg = d.getName() + " " + d.makeSound() + "s";
		System.out.println(msg);

		Bird b = new Bird("Tweety");
		msg = b.getName() + " " + b.makeSound() + "s";
		System.out.println(msg);
	}
}

f. Run and observe the output.

g. Since a Dog is-a Animal we can use Animal as a reference type when creating a Dog (or Bird). Add these lines to the end of main, run, and observe the output:

	Animal a1 = new Dog("Lucky");
	msg = a1.getName() + " " + a1.makeSound() + "s";
	System.out.println(msg);

	Animal a2 = new Bird("Kiwi");
	msg = a2.getName() + " " + a2.makeSound() + "s";
	System.out.println(msg);

h. Add this line to the end of main:

Animal a3 = new Animal("Shorty");

Note the compile error. This is important: you can not create an instance of an abstract class. Now, comment that line out.

4. Add a polymorphic method to process animals – Do the following:

a. Add this method to the Driver class:

public static void printAnimal(Animal a) {
	String msg = a.getName() + " " + a.makeSound() + "s";
	System.out.println(msg);
}

Note that this method accepts an Animal. However, a Bird is-a Animal and so is a Dog so we can pass either of these to this method.
b. Add these lines to the end of main, run, and observe the output

System.out.println("Calling polymorphic method");
printAnimal(d);
printAnimal(b);
printAnimal(a1);

Note that we can pass a Dog or a Bird to the method.

5. Casting – Do the following:

a. Add this method to the Driver class:

public static void whatIsIt(Animal a) {
	if(a instanceof Dog) {
		Dog dog = (Dog)a;
		System.out.println("I'm a Dog named " + dog.getName());
	}
	else if(a instanceof Bird) {
		Bird bird = (Bird)a;
		System.out.println("I'm a Bird named " + bird.getName());
	}
}

Note that we can cast objects just as we did in Chapter 11.
b. Add these lines to the end of main, run, and observe the output

System.out.println("Casting");
whatIsIt(a1);
whatIsIt(a2);

Stage 2 - Interfaces

In this stage we will consider the concept of interfaces.

6. (Read, no action required).

a. An interface in Java is very similar to an abstract class, except that all methods are abstract. None of the behaviors are implemented and it can’t define any instance variables. Thus, an interface is simply a specification of behavior.

b. Study the figure below and note the following:

· We use the interface modifier to define an interface.
· We can declare the methods in an interface as abstract, but we don’t have to because by default all methods in an interface are abstract.
· We use the implements keyword to denote that a class is implementing an interface.
· The Bird2 class must implement the (abstract) fly method.
[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a6.jpg]
c. An interface generally follows the is-a rule, e.g. a Bird is-a Flyer. However, many times it is easier to think about it as is-able-to, or can-do, or is-kind-of.

d. We will say more about when to use an abstract class and when to use an interface in class.

e. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\c4.jpg]In UML, a hollow triangle with a dashed line is used to indicate that a class is implementing an interface as shown on the right.

7. Do the following:

a. Copy the animals package and paste it giving it the new name, animals2.

b. Create a new interface (in the animals2 package) by choosing: File, New, Interface and supplying the name, Flyer.

c. Add the abstract method:

public String fly();

Note that all methods in an interface are abstract so you do not need to add the abstract modifier. However, you can if you want. Similarly, all methods in an interface are public and so the scope modifier can be left off as well (I generally leave off the abstract, but do use public).

d. Next, we will create the Bird2 class that implements the Flyer interface. Do the following:

i. Select the animals2 node in the Package Explorer.
ii. Choose: File, New, Class
iii. Supply the Name, Bird2 and then choose the Add button:

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a1.jpg]

iv. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a2.jpg]Type Flyer and choose OK.

v. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a3.jpg]Choose Finish and the Bird2 class should be open and appear as shown on the right. Note that the required method(s) are automatically supplied with a default implementation.

e. Add a private string name instance variable, a getter, and a constructor that accepts the name to the Bird2 class.

private String name;

public Bird2(String name) {
	this.name = name;
}

public String getName() {
	return name;
}

f. Remove the code in the fly method and replace with:

return "flap-flap";

8. Now we will test the Bird. Do the following:

a. Open Driver (in the animals2 package) and replace everything in the class (except the package statement at the top) with:

public class Driver {
	public static void main(String[] args) {
		Bird2 b = new Bird2("Castro");
		String msg = b.getName() + ", " + b.fly();
		System.out.println(msg);
	}
}
	
b. Run and verify the output.

c. Add this code to the bottom of main:

Flyer flyer = new Bird2("Wendy");
flyer.getName();
System.out.println(flyer.fly());

Notice that a compile error occurs. We are using Flyer as the reference type for creating a Bird2 which is fine. However, the Flyer interface does not define a getName method. This illustrates what we said earlier that the reference type (Flyer) determines which methods are accessible.

d. Comment out the line from above that give the compile error, run, and verify the output.

e. We can cast objects just the same way as we did in the last chapter. Add this code to the bottom of main, run, and verify the output.

System.out.print("Casting a flyer: ");
if(flyer instanceof Bird2) {
	Bird2 b2 = (Bird2)flyer;
	msg = b2.getName() + ", " + b2.fly();
	System.out.println(msg);
}

9. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a8.jpg]A class in Java can implement any number of interfaces. We will implement the Flyer and Swimmer interfaces and in the Duck class as shown on the right. Thus, the Duck class will implement both the Flyer and the Swimmer interfaces. Do the following:

a. Create a new interface by choosing: File, New, Interface and supplying the name, Swimmer.

b. Add the abstract methods:

public String swim();
public String dive();

c. Create a new class named Duck that implements both Flyer and Swimmer as shown below (Remember to use the Add button). When done, choose Finish.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a4.jpg]

d. Implement the methods in the Duck class as shown below.

public class Duck implements Swimmer, Flyer {

	@Override
	public String fly() {
		return "duck flying";
	}

	@Override
	public String swim() {
		return "duck swimming";
	}

	@Override
	public String dive() {
		return "duck diving";
	}
}

e. Add these lines to the end of main, run, and verify the output:

Duck duck = new Duck();
System.out.println(duck.fly() + ", " + duck.swim() + ", " + duck.dive());

10. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\b1.jpg](Read, no action required) Classes in Java can extend one superclass and implement any number of interfaces. We will code the system shown in the class diagram on the right.

11. Do the following:

a. Open the Bird class (not Bird2) in the animals2 package.

b. Add this snippet of code to the end of the Bird class signature:

implements Flyer

c. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\a5.jpg]Notice that a compile error occurs. Click the red X as shown on the right and then double-click “Add unimplemented methods”:

d. The fly method will be created with a default implementation. Replace the code there with:

return "bird flap-flap";

e. Add this import statement to the top of Driver class:

import java.util.ArrayList;

f. Add this code to the bottom of main in the Driver class.

System.out.println("\nDogs and Birds: ");
ArrayList<Animal> animals = new ArrayList<>();
Animal a1 = new Dog("Rufus");
animals.add(a1);
Animal a2 = new Bird("Tweedledee");
animals.add(a2);

for(Animal a : animals) {
	String msg2 = "name: " + a.getName() + "\n";
	msg2 += "makeSound: " + a.makeSound();
	
	if(a instanceof Flyer) {
		Flyer f = (Flyer)a;
		msg2 += "\n" + "fly: " + f.fly();
	}
	System.out.println(msg2);
}

Note that we can cast an object to use an interface as the reference type. In the code above, we check to see if a is-a Flyer and if it is we cast it and call the fly method.

g. Run and verify the output.

Stage 3 - [bookmark: OLE_LINK1]The Comparable Interface

In this stage we will study the Comparable interface which is part of the Java API.

12. (Read, no action required).

a. The Java API provides the Comparable interface which is used to compare two objects to see which is larger, smaller, or if they are the same. The definition of the interface is:

public interface Comparable<E> {
	 public int compareTo(E o);
}

compareTo is an instance method and should compare this object (the reference to the instance) to the argument, o (we will discuss the generic type parameter <E> shortly). The return value is an integer and has this meaning:

	Return
	When

	a negative integer
	this < o

	zero
	this == o

	a positive integer
	this > o

b. The String class implements the Comparable interface. For example,

String x = "Atlanta";
String y = "Denver";

int diff1 = x.compareTo(y);

returns -3 which means that Atlanta is “less than” Denver. The compareTo method is only required to return a negative integer (any) when x is less than y. However, the String class returns -3 in this case to indicate that the first place that the two strings differ is 3 characters apart (e.g. A and D)

c. Why is this important? Remember that we can sort a list of Strings:

ArrayList<String> cities = new ArrayList<>(Arrays.asList("NYC", "ATL", "DEN"));
Collections.sort(cities);
String min = Collections.min(cities);
String max = Collections.max(cities);

The sort method requires that the items in the list being sorted implement the Comparable interface. Thus, the sort method calls compareTo on the individual items so that it can put them in order. The same is true of the min and max methods. There are other important classes and methods in the Java API that rely on Comparable.

13. Compare Strings – Do the following:

a. Create a package named comparable_examples.

b. Create a class named Examples1 and replace everything in the class (except the package statement at the top) with:

public class Examples1 {

	public static void main(String[] args) {
		compareStrings();
	}

	public static void compareStrings() {
		String x = "Atlanta";
		String y = "Denver";
		String z = new String("Atlanta");

		System.out.println("x=" + x + ", y=" + y + ", z=" + z);
		int diff1 = x.compareTo(y);
		System.out.println("x.compareTo(y)=" + diff1);
		int diff2 = y.compareTo(z);
		System.out.println("y.compareTo(z)=" + diff2);
		int diff3 = x.compareTo(z);
		System.out.println("x.compareTo(z)=" + diff3);
	}

}

c. Run and verify the output.

14. Compare Boxes – Do the following:

a. (Read, no action required). Suppose we have a Box class:

public class Box {
	int x, y, z;
	double volume;

	public Box(int x, int y, int z) {
		this.x = x;
		this.y = y;
		this.z = z;
		this.volume = x*y*z;
	}
}

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\b2.jpg]and we want to be able to sort a list of boxes based on their volume. What we need to do is have the Box class implement the Comparable interface as shown in the class diagram on the right and have the compareTo method compare the volumes:

public class Box implements Comparable<Box> {

	...

@Override
public int compareTo(Box other) {
	if(this.volume < other.volume)
		return -1; // this is smaller
	else if(this.volume > other.volume)
		return 1; // this is larger
	else
		return 0; // same
}

}

The specification for how compareTo works is that it simply return a “negative integer” if this is smaller than other (and a “positive integer” if this is larger, and “0” if they are the same). So, we can write compareTo in a much more succinct fashion as shown below:

	@Override
	public int compareTo(Box other) {
		return this.volume - other.volume;
	}

b. Create a class named Box and replace everything in the class (except the package statement at the top) with:

public class Box implements Comparable<Box> {
	int x, y, z;
	int volume;

	public Box(int x, int y, int z) {
		this.x = x;
		this.y = y;
		this.z = z;
		this.volume = x*y*z;
	}

	@Override
	public int compareTo(Box other) {
		return this.volume - other.volume;
	}

	@Override
	public String toString() {
		return "Box: x=" + x + ", y=" + y + ", z=" + z + ", vol=" + volume;
	}
}

c. Add these imports to the top (below the package statement) of the Examples1 class:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

d. Add this method to the Examples1 class:

public static void sortBoxes() {
	System.out.println("\nSort Boxes");
	ArrayList<Box> boxes = new ArrayList<>(Arrays.asList(new Box(5,5,5), new Box(2,2,5), new Box(3,3,3)));
	Collections.sort(boxes);
	Box min = Collections.min(boxes);
	Box max = Collections.max(boxes);

	System.out.println("smallest box: " + min);
	System.out.println("largest box: " + max);
	System.out.println("sorted boxes: " + boxes);
}

e. Add this line to the bottom of main in Examples1:

sortBoxes();

f. Run and verify the output. The output should be as you expect; however, we need to do one more thing to the Box class to guarantee that it works correctly.

15. Compare Boxes, override equals – Do the following:

a. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\05_ch13_AbstractClasses\b3.jpg](Read, no action required). Java’s documentation recommends that if you implement compareTo, then it should be consistent with equals. Remember that the equals method is inherited from the Object class. Thus, the Box class above should also override the equals method:

@Override
public boolean equals(Object o) {
	return this.volume == ((Box)o).volume;
}

b. Add the method above to the Box class.

c. Run and verify the output.

16. Compare Persons – Do the following:

a. (Read, no action required). Suppose we have a Person class that has a name field (String) and we want to be able to sort a list of Person objects on name. The equals and compareTo methods can be confusing at first. The name field is String which implements Comparable itself. Thus, we will use the name field’s equals and compareTo methods inside the overridden equals and compareTo methods in the Person class.

	@Override
	public int compareTo(Person other) {
		return this.name.compareTo(other.name);
	}

	@Override
	public boolean equals(Object o) {
		return this.name.equals(((Person)o).name);
	}

b. Create a class named Person and replace everything in the class (except the package statement at the top) with:

public class Person implements Comparable<Person> {
	String name;

	public Person(String name) {
		this.name = name;
	}

	@Override
	public int compareTo(Person other) {
		return this.name.compareTo(other.name);
	}

	@Override
	public boolean equals(Object o) {
		return this.name.equals(((Person)o).name);
	}

	@Override
	public String toString() {
		return "Person: name=" + name;
	}

}

c. Add this method to the Examples1 class:

public static void sortPersons() {
	System.out.println("\nSort Persons");
	ArrayList<Person> persons = new ArrayList<>(Arrays.asList(new Person("Xav"), new Person("Ana"), new Person("Mimi")));
	Collections.sort(persons);
	Person min = Collections.min(persons);
	Person max = Collections.max(persons);

	System.out.println("smallest person: " + min);
	System.out.println("largest person: " + max);
	System.out.println("sorted persons: " + persons);
}

d. Add this line to the bottom of main in Examples1:

sortPersons();

e. Run and verify the output.

Submission

17. Do the following

a. Zip all the folders (packages) under the src folder into a zip file named: lab8_lastname.zip
b. Upload your zip file to the lab8 dropbox in Blazeview.

[bookmark: _GoBack]You are done!

15

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

