[bookmark: _Hlk51847711]CS 1302 – Lab 15, IntelliJ

To complete this tutorial, you must have the IntelliJ installed as described in Lab 1. If you were unable to get it to work, you will need to work in the CS Lab to complete this assignment using the Eclipse instructiions (separate document)

This is a tutorial on writing Graphical User Interfaces (Gui). There are 9 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	Definitions & Overview
	

	2
	Create Hello World Gui
	

	3
	The GridPane Class
	

	4
	The HBox Class
	

	5
	The VBox Class & CheckBox Class
	

	6
	Modularizing Gui Construction
	

	7
	The ComboBox Control
	

	8
	The RadioButton & ToggleGroup Controls
	

	9
	The ListView Control
	

To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Definitions & Overview

Read (no action required)

1. [image:]Some basic definitions:

· Graphical User Interface (GUI) – A window that allows the user to interact with graphical icons (controls). A Gui is also called a form or window.

· Control – An element that is displayed on a GUI. For example, on the right we see the following controls: label, text field, button, text area. Controls are sometimes called widgets.

· Event Handler – An event handler is a piece of code that runs in response to a user interacting with certain controls. In the example on the right, when the button is pressed a button event handler is called to compute the monthly payment and total payment. Event handlers will be considered in the next lab.

2. To build a Gui application, there are two main tasks:

· Build the GUI.
· Write event-handlers.
This lab discusses how to build a Gui. The next lab discusses how to program event handlers.

3. [bookmark: _Hlk56845730][image:]Below are a few of the basic ideas and concepts that surround Gui construction in JavaFX. We will learn the details as we move through the chapter.

· JavaFX refers to a set of classes that we use to build a Gui.

· To build a Gui in JavaFX, you put Controls on a Pane.

· A Pane is a container that arranges Controls in a particular layout. For example, the red VBox pane (outlined for emphasis) contains a Label, and 3 RadioButtons.

· Panes can be nested. For example, the blue HBox at the top contains a VBox and a GridPane.

· A Gui must have exactly one root pane. The root pane in the Gui on the right is the green VBox. Best practice is to name the root pane, root; however, I’ve not been consistent with that in this Lab.

· [image:]Control is an abstract class in Java. Some common subclasses are shown in the diagram on the right. Some of the common controls are shown here:

https://docs.oracle.com/javafx/2/ui_controls/overview.htm

· Pane is a class in Java and is used as a container to hold Controls or nested Panes. Subclasses of Pane are used to layout controls in different ways. Some common subclasses are shown in the diagram on the right. For example, a GridPane arranges the controls in a grid (see Gui above), an HBox arranges controls horizontally in a single row. The diagram also shows that panes can be nested, i.e. a pane inside another pane. Scroll through this page to see examples of different types of Panes:

http://docs.oracle.com/javafx/2/layout/builtin_layouts.htm

Stage 2 - Create Hello World Gui

4. Establish a Project Workspace – Create a folder on your drive where you will put your lab or use an existing one.

In Window’s File Explorer, create a folder where you want to create a project; you’ll need this location shortly. I’ll use: lab15_dgibson.

5. Run IntelliJ

6. Create a JavaFX Project –

a. Choose: File, New, Project

· Change so the values are similar to below:
· Choose JavaFX on the left
· Change the Location to the one identified just above.
· The Name should auto populate to the same name as the project folder
· Choose: Next, Finish
· Answer “this window” or “new window”, doesn’t matter

[image:]

7. Expand the files in the Project Explorer. Note:

· There is a long folder structure: src\main\java\com\example\lab15_lastName
· You will see the following classes that were automatically created: HelloApplication and HelloController.
· Open HelloApplication and note the packgage: com.example.lab15_lastName. IntelliJ puts the code in a sub-sub-package.

8. If the HelloApplication doesn’t recognize, FXMLLoader class it will be displayed red. Hover your mouse over and choose the option: “Add ‘requires javafx.fxml’ directive to module-info.java”.

9. [image:]Run the program by one of these methods:

· Choosing the green arrow to the left of the class signature while the code is displayed
· Choose: Run, Run
· Press: Alt+Shift+F10

It takes it a minute to get ready. You can watch the progress in the lower-right of the screen. The screen shown on the right will appear. Close the GUI.

10. [image:]Create Hello World Application – Open Main and do the following:

a. We are going to build a Gui that looks as shown on the right.
b. Open HelloApplication
c. Replace the code in the start method with:

try {
	BorderPane root = new BorderPane();
	Scene scene = new Scene(root,400,400);
	scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
	stage.setScene(scene);
	stage.show();
} catch(Exception e) {
	e.printStackTrace();
}

d. Hover your mouse over “BorderPane”, it is highlighted red in code window. Choose: Import Class

e. Add the instance variable (i.e. not in the start method) below which declares a Label:

protected Label lbl;

Hover your mouse over the red colored “Label” and choose: Import class. Verify that this import was added:

import javafx.scene.control.Label;

Note: you will have to do this at other places in this lab. For Gui components always choose the ones in the javafx… package.

f. [bookmark: _GoBack]Add these instance variables directly below the Label. You will need to import the corresponding packages as you did above.

protected TextField txfName;
protected TextArea txaMessage;
protected Button btnHelloWorld;

g. Identify the first two lines in the try block:

BorderPane root = new BorderPane();
Scene scene = new Scene(root,400,400);

And replace them with (continues next page):

// Create controls
lbl = new Label("Name");
txfName = new TextField();
txaMessage = new TextArea();
txaMessage.setPrefHeight(100);
txaMessage.setPrefWidth(200);
btnHelloWorld = new Button("Hello World");

// Create container for controls
GridPane root = new GridPane();

// Add controls to container
root.add(lbl, 0, 0);
root.add(txfName, 0, 1);
root.add(btnHelloWorld, 0, 2);
root.add(txaMessage, 0, 3);

// Set the size of window (pixels)
Scene scene = new Scene(root,300,250);

// Set the title for the window
stage.setTitle("Hello World");

// Code to display the Gui

Note: you will need to resolve the compilation error for GridPane.

h. In the Project Explorer, go to the resources node and expand until you see: lab15_lastName. The complete path is: src/main/resources/com/example/lab15_lastName. See figure below.
i. Right-click lab15_lastName (the one you just identified) and choose: New, File, and supply the name: application.css. Right now, we will just leave the file empty.

[image:]

j. [image:]Run, and observe the Gui. Notice:

· There is no spacing between controls nor padding around the window. We will address that shortly by applying styling.
· You can type in the text field, and press the button, but nothing happens. Of course, what we need is an event handler for the button, which we address in the next lab.

k. Go back and read the code and comments in the try block. We will explain more as we go along. Note that we are using a GridPane as our “root” container. We consider GridPane in the next stage of this lab.

l. Next, we will add some styling to put some space between the controls and padding around the window. Open, application.css and add these styles (on the left):

	.root {
	-fx-padding: 10px;
}

GridPane {
	-fx-hgap:10px;
	-fx-vgap:10px;
}
	There are two style definitions on the left: .root and GridPane.

i. The first, .root applies to the root container (which happens to be a GridPane).
ii. The second, GridPane applies to all instances of a GridPane (in this cases, there is only one). Since the root container is GridPane, the rules could be combined; however, we will keep them separate.

m. Run and observe the Gui. It should be similar to the one shown in step a above.

Stage 3 - The GridPane Class

In this stage we consider the GridPane class.

11. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch14_16_GUI\b8.jpg]Read (no action required) –

a. A Pane is a way to layout a Gui. A few common Pane classes are shown on the right. We will consider GridPane in this stage of the labe, and HBox, and VBox another.

b. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch14_16_GUI\b7.jpg]A GridPane is a container that holds UI controls and arranges them in a grid with columns and rows.

· A GridPane has regions as shown on the right. In general, the regions are not equally sized (as shown in the figure). The rules for sizing regions depend on the controls used, and their preferred sizes. This can be complicated and we will not consider sizing.

· GridPane has an add method that accepts the control to add and the position on the grid to put the control (notice that the order is column, row, not the other way around!).

add(Control control, int column, int row)

c. [image:]For example, in the Gui we built above (and shown on the right), we used this code:

// Create container for controls
GridPane root = new GridPane();

// Add controls to container
root.add(lbl, 0, 0);
root.add(txfName, 0, 1);
root.add(btnHelloWorld, 0, 2);
root.add(txaMessage, 0, 3);

Verify the placement of each of the controls. You can see that we only used the first column.

12. Save and close all open files. Then go to the Project Explorer and copy, HelloApplication and paste it in the same package (lab15_lastName). In the dialog that appears, simply add a “2” to the end of the new name, i.e. HelloApplication2.

13. Open HelloApplication2, and in start, do the following:

	Replace this:
	With this:

	// Add controls to container
root.add(lbl, 0, 0);
root.add(txfName, 0, 1);
root.add(btnHelloWorld, 0, 2);
root.add(txaMessage, 0, 3);
	// Add controls to container
root.add(lbl, 0, 0);
root.add(txfName, 1, 0);
root.add(btnHelloWorld, 0, 1);
root.add(txaMessage, 0, 2);

14. [image:]Run HelloApplication2 and obverse the Gui (shown on right). Verify from the code the positioning. It doesn’t look very nice! We will soon learn how to make it look at little better. However, as we said, positioning and sizing is challenging.

Feel free to experiment with positioning the controls in Main2, we won’t be using it anymore.

Stage 4 - The HBox Class

15. [bookmark: _Hlk33957901] (Read, no action required)

· An HBox is a container that arranges the controls horizontally, one after the other, in a single row. For example, the code below renders as shown on the right (I have added a blue rectangle around the HBox for emphasis):

[image:]lbl = new Label("Name");
txfName = new TextField();

// Create HBox
HBox hBoxName = new HBox();

// Add controls to HBox
hBoxName.getChildren().addAll(lbl, txfName);

Note that the HBox has a non-obvious way to add the controls. There is not an add method. Instead, you call the getChildren method that returns a collection of the controls in the HBox (in this case, initially empty) and then you can call the addAll method to add the controls (or you can call the add method and add the controls one at a time.

· [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch14_16_GUI\c1.jpg]One very useful concept is that we can nest panes: we can put panes inside of other panes. This provides for infinitely more layout flexibility and organization. In other words, a Pane can contain any number of (sub) Panes, and each Pane can contain any number of controls as shown in the class diagram on the right.

· [image:]For example, the code below would render as shown on the right. The code below, surrounded by the box illustrates nesting the HBox at the top, inside the root (GridPane).

// Create controls
lbl = new Label("Name");
txfName = new TextField();
txaMessage = new TextArea();
txaMessage.setPrefHeight(100);
txaMessage.setPrefWidth(200);
btnHelloWorld = new Button("Hello World");

	// Create HBox and add label and text field
HBox hBoxName = new HBox();
hBoxName.getStyleClass().add("hbox");
hBoxName.getChildren().addAll(lbl, txfName);

// Create root container for controls
GridPane root = new GridPane();

// Add HBox to Gridpane
root.add(hBoxName, 0, 0);

// Add other controls to GridPane
root.add(btnHelloWorld, 0, 1);
root.add(txaMessage, 0, 2);

// Add GridPane (root) to Scene.
Scene scene = new Scene(root,300,250);

16. Next, we build the Gui shown above. Do the following:

a. Go to the SE and copy, HelloApplication (not HelloApplication2) and paste it in the lab15_lastName package and give it the name, HelloApplication3. Choose: OK.

b. Replace all code in the try block with (continues next page):

// Create controls
lbl = new Label("Name");
txfName = new TextField();
txaMessage = new TextArea();
txaMessage.setPrefHeight(100);
txaMessage.setPrefWidth(200);
btnHelloWorld = new Button("Hello World");

// Create HBox
HBox hBoxName = new HBox();
// Add style definition to HBox
hBoxName.getStyleClass().add("h_or_v_box");
// Add controls to HBox
hBoxName.getChildren().addAll(lbl, txfName);

// Create root container for controls
GridPane root = new GridPane();

// Add HBox to Gridpane
root.add(hBoxName, 0, 0);
// Add other controls to GridPane
root.add(btnHelloWorld, 0, 1);
root.add(txaMessage, 0, 2);

// Add GridPane (root) to Scene.
Scene scene = new Scene(root,300,250);

// Set the title for the window
stage.setTitle("Hello World");

// Code to display the Gui
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
stage.setScene(scene);
stage.show();

c. Resolve the compilation error for HBox by hovering over it and choosing: Import Class

d. Open application.css and add this style rule

.h_or_v_box {
 -fx-padding: 10px;
 -fx-spacing: 10px;
}

Note: see the highlighted line of code above. We are applying the style definition directly to a control. This contrasts with the earlier style definitions which were applied automatically. We will explain this in class.

e. Run and verify that the Gui appears as shown above. If you don’t see the green arrow, select HelloApplication3 in the Project Explorer, right-click, and choose: Run

Stage 5 - [bookmark: _Hlk33958206]The VBox Class & CheckBox Class

17. (Read, no action required)

· [bookmark: _Hlk33958246][image:]A VBox is the same as an HBox except that the controls are arranged vertically, in a single column. For example, the code below would render as shown on the right (note that I have added a red border around the VBox for emphasis):

lblImFeeling = new Label("I'm Feeling:");
chkHappy = new CheckBox("Happy");
chkHungry = new CheckBox("Hungry");
chkSleepy = new CheckBox("Sleepy");

VBox vBoxFeeling = new VBox();
vBoxFeeling.getChildren().addAll(lblImFeeling, rbHappy, rbOk, rbSad);

· You can see that we are using the CheckBox class above.

18. [image:]Next, we add the VBox component above to the Gui we have been building and the result will be similar to that as shown on the right. Do the following:

a. Go to the Project Explorer and copy, HelloApplication3 and paste it in the lab15_lastName package. The dialog that appears will want suggest giving it the name, HelloApplication4.
b.
c. Add these instance variables to the class:

protected Label lblImFeeling;
protected CheckBox chkHappy, chkHungry, chkSleepy;

d. Replace all code in the try block with the code below (continues next page). Carefully read the comments marked with “***”.

// Create controls
lbl = new Label("Name");
txfName = new TextField();
txaMessage = new TextArea();
txaMessage.setPrefHeight(100);
txaMessage.setPrefWidth(200);
btnHelloWorld = new Button("Hello World");

// Create HBox and add label and text field
HBox hBoxName = new HBox();
hBoxName.getStyleClass().add("h_or_v_box");			
hBoxName.getChildren().addAll(lbl, txfName);

//***LOOK at this carefully below

// Create VBox and check boxes and add
lblImFeeling = new Label("I'm Feeling:");
chkHappy = new CheckBox("Happy");
chkHungry = new CheckBox("Hungry");
chkSleepy = new CheckBox("Sleepy");
VBox vBoxFeeling = new VBox();
vBoxFeeling.getStyleClass().add("h_or_v_box");
vBoxFeeling.getChildren().addAll(lblImFeeling, chkHappy, chkHungry, chkSleepy);

// Create root container for controls
GridPane root = new GridPane();

//***LOOK at this carefully below
//***Note how we add the hbox at 0,0, and
// the vbox at 1,0, right beside it

// Add HBox to Gridpane
root.add(hBoxName, 0, 0);
// Add VBox to Gridpane
root.add(vBoxFeeling, 1, 0);

// Add other controls to GridPane
root.add(btnHelloWorld, 0, 1);
root.add(txaMessage, 0, 2);

// Add GridPane (root) to Scene.
Scene scene = new Scene(root,400,300);

// Set the title for the window
stage.setTitle("Hello World");

// Code to display the Gui
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
stage.setScene(scene);
stage.show();

e. In the start method, change the size of the window to 400, 300 (make bigger or smaller as necessary):

Scene scene = new Scene(root,400,300);

f. [image:]Run and verify that the Gui appears as shown on the right.

[bookmark: _Hlk33959120]

Stage 6 - Modularizing Gui Construction

In this stage we consider modularizing the creation of the Gui.

19. Read (no action required) – Almost always there is a lot of code to build a Gui so a good idea is to modularize this code. For example, the very simple Gui above required 21 lines of code (excluding comments and blank lines). In real applications it will be hundreds to thousands of lines of code. Instead of building the Gui in the start method, we will have the start method call a method, buildGui that builds and returns the Gui. And, it will further modularize by calling helper methods to build various regions (Panes) of the Gui. . Here is an overview of how we will modularize:

a. We will write a helper method, buildGui that builds the entire Gui and returns a Pane object (which is the Gui)

private Pane buildGui() {
	GridPane root = new GridPane();
	...
	return root;
}
b. In start, we call this method and then pass the result to the scene.

// Create root container for controls
Pane root = buildGui();

// Add GridPane (root) to Scene.
Scene scene = new Scene(root,400,300);

c. [image:]As shown on the right, we modularize further by writing helper methods to build the name entry, buildNameEntry() and to build the check box component, buildFeelingsEntry().

d. Then, in buildGui, we call the two methods:

private Pane buildGui() {
	GridPane root = new GridPane();
	
	Pane p = buildNameEntry();
	root.add(p, 0, 0);
	
	p = buildFeelingsEntry();
	root.add(p, 1, 0);
	...
	return root;
}

20. Do the following:

a. Close all open files
b. Select HelloApplication4, copy, paste into the lab15_lastName package and give it the name: HelloApplication5
c. Study the helper method below and then add it to HelloApplication5

private Pane buildNameEntry() {
	lbl = new Label("Name");
	txfName = new TextField();
	// Create HBox and add label and text field
	HBox hBoxName = new HBox();
	hBoxName.getStyleClass().add("h_or_v_box");			
	hBoxName.getChildren().addAll(lbl, txfName);
	return hBoxName;
}

d. Study the helper method below and then add it to HelloApplication5

private Pane buildFeelingsEntry() {
	// Create VBox and check boxes and add
	lblImFeeling = new Label("I'm Feeling:");
	chkHappy = new CheckBox("Happy");
	chkHungry = new CheckBox("Hungry");
	chkSleepy = new CheckBox("Sleepy");
	VBox vBoxFeeling = new VBox();
	vBoxFeeling.getStyleClass().add("h_or_v_box");
	vBoxFeeling.getChildren().addAll(lblImFeeling, chkHappy, chkHungry, chkSleepy);
	return vBoxFeeling;
}

e. Study the top-level helper method below and then add it to HelloApplication5

private Pane buildGui() {
	GridPane root = new GridPane();
	
	Pane p = buildNameEntry();
	root.add(p, 0, 0);
	
	p = buildFeelingsEntry();
	root.add(p, 1, 0);
	
	// Create other controls
	txaMessage = new TextArea();
	txaMessage.setPrefHeight(100);
	txaMessage.setPrefWidth(200);
	btnHelloWorld = new Button("Hello World");
	// Add other controls to GridPane
	root.add(btnHelloWorld, 0, 1);
	root.add(txaMessage, 0, 2);
	
	return root;
}

f. Replace all the code in the try block with the code below. Study the code and note how simple it is to read. This is called top-down design: we push the details into helper methods.

// Create root container for controls
Pane root = buildGui();
// Add GridPane (root) to Scene.
Scene scene = new Scene(root,400,300);
// Set the title for the window
stage.setTitle("Hello World");
// Code to display the Gui
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
stage.setScene(scene);
stage.show();

g. Run and observe that the Gui is the same as Main4.

Stage 7 - The ComboBox Control

21. [image:]Read (no action required) –[image:] In this stage, we are going to replace the Label in buildNameEntry() with a ComboBox as shown on the right. A ComboBox is what we frequently call a drop-down list: when selected it displays a list of options as shown below.

22. Do the following:

a. Close all open files.
b. Select HelloApplication5, copy, paste into the lab15_lastName package and give it the name: HelloApplication6.

c. In HelloApplication6, add the instance variable below to declare the ComboBox, which is a generic class, so we must specify the type of elements we will display. In this case, the generic type parameter, <String> indicates that the “list” will be displayed as strings (it could hold images or other things).

protected ComboBox<String> cmbSalutation;

d. Find the buildNameEntry() method and do the following:

i. Replace:

lbl = new Label("Name");

with:

cmbSalutation = new ComboBox<>();
cmbSalutation.getItems().addAll("Mrs", "Ms", "Mr", "Dr");
cmbSalutation.setValue("Ms");

Notes:
· The first highlighted line adds the items to display in the ComboBox.
· The second highlighted line sets the item in the list that is initially displayed.

ii. Replace:

hBoxName.getChildren().addAll(lbl, txfName);

with:

hBoxName.getChildren().addAll(cmbSalutation, txfName);

e. In the start method, change the size of the window to 450, 300:

Scene scene = new Scene(root,450,300);

f. Run and observe that the Gui is similar to what is shown above.

Stage 8 - The RadioButton & ToggleGroup Controls

23. [image:]Read (no action required) – In this stage, we are going to introduce RadioButtons and to our Gui as shown on the right. We will also utilize two new helper methods:

· buildMessageStyleEntry uses a HBox to place the button, label, and radio buttons.

· buildUpperLeft uses a VBox to hold the name entry and the message style entry. And, buildUpperLeft is placed at (0,0) in the root GridPane.

RadioButtons are a bit more complicated to deal with. Standard usage of radio buttons requires that only one button be allowed to be selected. To achieve this, we must attach a ToggleGroup to the RadioButtons.

24. Do the following:

a. Close all open files.
b. Select HelloApplication6, copy, paste into the lab15_lastName and give it the name: HelloApplication7.

c. In HelloApplication7, add the instance variable below to declare the ToggleGroup. We could define the RadioButtons as instance variables, but we don’t have to. Instead, we will make the RadioButtons local variables in buildMessageStyleEntry. This will be explained in class.

protected ToggleGroup tGrpStyleChoice = new ToggleGroup();

d. Add the method below to HelloApplication7.

private Pane buildMessageStyleEntry() {
	btnHelloWorld = new Button("Hello World");

	Label lbl = new Label("Message Style: ");
	
	RadioButton rbShort = new RadioButton("Short");
	rbShort.setToggleGroup(tGrpStyleChoice);
	rbShort.setSelected(true);

	RadioButton rbLong = new RadioButton("Long");
	rbLong.setToggleGroup(tGrpStyleChoice);
	
	// Create HBox and add label and radio buttons
	HBox hBoxName = new HBox();
	hBoxName.getStyleClass().add("h_or_v_box");
	hBoxName.getChildren().addAll(btnHelloWorld, lbl, rbShort, rbLong);
	return hBoxName;
}

Notes:
· The first highlighted line creates a RadioButton which displays the text: “Short”.
· The second highlighted line assigns the radio button to the ToggleGroup
· The third highlighted line selects this radio button for the initial display.

e. Add the method below to HelloApplication7.

private Pane buildUpperLeft() {
	VBox vBox = new VBox();
	vBox.getStyleClass().add("h_or_v_box");
	vBox.getChildren().addAll(buildNameEntry(), buildMessageStyleEntry());
	return vBox;
}

f. Replace the buildGui method with the version below.

private Pane buildGui() {
	GridPane root = new GridPane();
	
	Pane p = buildUpperLeft();
	root.add(p, 0, 0);
	
	Pane p2 = buildFeelingsEntry();
	root.add(p2, 1, 0);
	
	// Create other controls
	txaMessage = new TextArea();
	txaMessage.setPrefHeight(100);
	txaMessage.setPrefWidth(200);
	root.add(txaMessage, 0, 1);
	
	return root;
}

g. In the start method, change the size of the window to 550, 300:

Scene scene = new Scene(root,550,300);

h. Run and observe that the Gui is similar to what is shown above.

Stage 9 - The ListView Control

25. Read (no action required) – In this stage, we introduce the ListView control. A ListView displays a list of items vertically and allows for single selection, or for multiple selection.

[image:]

26. Do the following:

a. Close all open files.
b. Select HelloApplication7, copy, paste into the lab15_lastName and give it the name: HelloApplication8.

c. In HelloApplication8, add the instance variable below to declare the ListView.

protected ListView<String> lvwInterests;

d. Add the method below to HelloApplication8.

private Pane buildInterestsEntry() {
	lvwInterests = new ListView<>();
	lvwInterests.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
	lvwInterests.getItems().addAll("Music", "Dance", "Disc Golf", "Theater", "Reading");
	lvwInterests.setPrefHeight(150);
	lvwInterests.setPrefWidth(120);
	VBox vBox = new VBox();
 vBox.getStyleClass().add("h_or_v_box");	
	vBox.getChildren().add(new Label("Interests\nSelect all that apply"));
	vBox.getChildren().add(lvwInterests);
	return vBox;
}

Notes:
· The first highlighted line sets the ListView so that multiple items can be selected
· The second highlighted line assigns the items in the list.

e. Add these two lines to the buildGui method.

Pane p3 = buildInterestsEntry();
root.add(p3, 2, 0);

f. In the start method, change the size of the window to 700, 350:

Scene scene = new Scene(root,700,350);

g. Run and observe that the Gui is similar to what is shown above.

Submission

1. Do the following

a. Zip the entire project folder (and all it’s contents) into a zip file named: lab15_lastname.zip
b. Upload your zip file to the lab15 dropbox in Blazeview.

You are done!

4

image3.jpeg
Label
Button
TextField
TextArea
CheckBox
RadioButton
ListView

ComboBox

image4.png
B New Project X

% Java
Name: lab15_dgibson
117 Maven
Gradle
Location:
a4 Android
Intelli Platfc o0 o R ot Groowy
Build tem: Maven Gradle
@ Groovy =
K Kotin Test framework | JUnit TestNG
% Empty Proje
Group: com.example
Artifact: lab15_dgibson
Project SDK: Pe 19 version 19.0.1 v

v | (R conn | [vew

image5.png
7 Hello!

Welcome to JavaFX Application!

image6.png
B File Edit View Navigate Code Refactor E labi5gibso — u] X
in) resources) Lk~ A HelloApplication v = b % G Q ax »
§ 7 Project v O | — .HeIIoVa’.
=| v I lab15_gibson G)\data_courses\CS 1302 - new\labs\l2b15_gibsol A4 A v |
B bidea B . g
v src i 2
I main N 18a
v Mjova inp &
v 5 com 6 imp
v Imexample 7 imp %
~ I3 lab15_gibson imp &
> @ HelloApplication 1—,,,,,5
> @ HelloController 1 ing
-infoj . om
3% module-infojava - 1p T
v resources S
12 imp 3
v M com - H
~ I example - —
~ I lab15_gibson & 1mp
i hello-view fxml 16 » pub
> W target 17
Run: HelloApplication & —
'S C:\Users\dgibson\.jdks\openjdk-19.0.1\bin\java.exe
Y
N _ Process finished with exit code ©
5 >
3
] =
K] &
3 L]
* »
P Rn i=TODO @ problems B Terminal 4\ Build ¥ Dependencies () Event
[0 Build completed successfully in 1... (3 minutes ago, 46:14 LF UTF-8 4spaces

image7.png
B HelloWorld ~ —

Name

]

Hello World

image8.jpeg

image9.jpeg

image10.jpeg
W1 HelloWorld — m}

Name

[

| Hello World |

image11.png
B HelloWorld ~ — o X

Hello World

image12.png

image13.jpeg
Pane Ul Control

image14.jpeg
W HelloWorld — m}

X

Name

€—H

| Hello World |

~€—B

Gl

Box at 0,0

utton at 0,1

XtArea at 0,2

image15.jpeg
I'm Feeling:
Happy
Hungry
Sleepy

image16.png
W Hello World - o

Happy
Hungry
Sleepy

Hello World

image17.jpeg
® Hello World

Name I'm Feeling:

i

buildNameEntry()

Hello World

Happy
Hungry
Sleepy

buildFeelingsEntry()

image18.png
W Hello World

Salutation

image19.png
7 Hello World

e -]

Hello World

[m}

I'm Feeling:
Happy
Hungry
Sleepy

image20.png
Existing method:

J

| Hello World

buildNameEntry()

-

(

Ms

A

)

(Hello World = Message Style: '@ Short Lo@

\

J

new method:
buildMessageStyleEntry()

new method:
buildUpperLeft()

O

I'm Feeling:
Happy

Hungry
Sleepy

image21.svg
 new method: buildMessageStyleEntry() Existing method: buildNameEntry() new method: buildUpperLeft()

image22.jpeg
B Hello World

[=_-]

Hello World | Message Style:

®) Short

Long

I'm Feeling:
Happy
Hungry
Sleepy

= O X

(" Interests \

Select all that apply

Music
Dance
Disc Golf
Theater

Reading

new method:
buildinterestsEntry()

image1.jpeg
Label —>|
TextField —>

Button —>~|

TextArea —>

B Hello World

Name

Hello World

image2.jpeg
e

(" _VBox GridPane ") HBox
Select Shape
Side 1:
@ Triangle
Rectangle Side 2:
Circle Side %
. J
(") HBox

Create Triangle Show All

