CS 1302 – Lab 5
Relationships between Classes

This is a tutorial on associations between classes and the StringBuilder classes. There are 5 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	One-to-One Associations
	10.4

	2
	One-to-One Association, Bi-directional Navigability
	10.4

	3
	One-to-Many Association
	10.4

	4
	One-to-Many, Remove Methods
	10.4

	5
	The StringBuilder Class
	10.11

To make this document easier to read, it is recommended that you turn off spell checking and grammar checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - One-to-One Association

In this stage we study a one-to-one association between classes.

1. (Read, no action required)

a. In the previous chapter, we discussed (1) how a class can be used to model a real-world object, (2) how to write the class, and (3) test the class. In this lab we learn how to model the relationship between two classes. For example:

	Relationship
	Example
	Class Diagram

	One-to-one
	“A person has a dog”
	[image:]

	One-to-many
	“A bank has a many customers”
	[image:]

	Many-to-many
	“A student many courses and a course has many students”
	[image:]

In the remainder of this lab, we consider one-to-one, and one-to-many. We do not consider many-to-many in this course.

b. In terms of a class, what does it mean to say to say, “a person has a dog”? It means that the Person class has an instance variable of type Dog as shown on the left below.

	public class Person {
	...
	private Dog dog;
	...	
	public Dog getDog() {
		return dog;
	}
	public void setDog(Dog dog) {
		this.dog = dog;
	}
...
}
	public class Dog {
	private String name;

	public Dog(String name) {
		this.name = name;
	}
...
}

c. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\02\t1.jpg]Consider the class diagram shown on the right. Note:

a. It shows that a Person has-a Dog. In UML this is indicated by the solid line between the two classes and is called an association (or a has-a relationship).

b. The navigability is indicated by the arrow at the end of the association. Since the arrow points to Dog, this indicates that a Person has a Dog instance variable.

c. The role name, dog indicates that this is the name of the instance variable in the Person class.

d. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\02\t2.jpg]In the next few steps we will write the code indicated by the class diagram on the right. Refer back to it as necessary.

2. Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.
b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use.
c. Create a Project – Do the following:

i. Choose: File, New, Java Project.
ii. Supply a project name, lab05_lastName, e.g. lab05_gibson
iii. Choose: Finish

3. Add the Dog Class

a. Choose: File, New, Class
b. Set the Package to “association1”
c. Set the Name to “Dog”
d. Choose: Finish

e. Replace everything in the Dog class except the package statement at the top.

public class Dog {
	private String name;

	public Dog(String name) {
		this.name = name;
	}

	public String getName() {
		return name;
	}

	public String walk() {
		return name + " is walking";
	}

	public String barkAt(Dog d) {
		return name + " is barking at " + d.getName();
	}

	@Override
	public String toString() {
		return "dog named " + name;
	}
}

4. Add the Person Class – This will be the last time I give explicit instructions on creating a class.

a. Select the association1 node in the Package Explorer.
b. Choose: File, New, Class
c. Make sure the Package value is “association1”
d. Set the Name to “Person”
e. Choose: Finish
f. Replace everything in the Person class except the package statement at the top.

public class Person {
	String name;
	Dog dog;

	public Person(String name, Dog dog) {
		this.name = name;
		this.dog = dog;
	}

public String getName() {
	return name;
}

	@Override
	public String toString() {
		return name + " has a " + dog;
	}
}

5. (Read, no action required)

a. Study the Person classes’ constructor:

	public Person(String name, Dog dog) {
		this.name = name;
		this.dog = dog;
	}

Notice, that when you create a person, you are required to pass in a dog (as well as the name of the person). Thus, to create a person, we could write code like this:

Dog d = new Dog("Juno");
Person p = new Person("Xavier", d);

b. Study the Person classes’ toString:

@Override
public String toString() {
	return name + " has a " + dog;
}

Note:
· name is the name of the person
· When we append the string with dog, this is implicitly calling the Dog’s toString method. Thus:

Dog d = new Dog("Juno");
Person p = new Person("Xavier", d);
System.out.println(p);

Will display:
	
Xavier has a dog named Juno

6. Add a class named PersonTest in the association1 package and replace the code with:

public class PersonTest {

	public static void main(String[] args) {
		testPersonCreation();
	}
	
	public static void testPersonCreation() {
		System.out.println("-->testPersonCreation");
		Dog d = new Dog("Juno");
		Person p = new Person("Xavier", d);
		System.out.println(p);

	}
}

7. Study the test method, run the class, and verify the output.

8. (Read, no action required) Notice that the Dog class has a walk method which returns a string:

	public String walk() {
		return name + " is walking";
	}

Suppose we want to add a way for the person to tell the dog to walk? We can do that by providing a walkDog method in the Person class that simply tells her dog to walk.

9. Do the following:

a. Add this method to the Person class after the constructor:

public String walkDog() {
	return name + " walks dog: " + dog.walk();
}

Notice that the method uses its reference, dog and calls the walk method. This is called delegation. The person is delegating to the dog’s walk method.

b. Add this test method to PersonTest:

public static void testWalkDog() {
	System.out.println("\n-->testWalkDog");
	Dog d = new Dog("Juno");
	Person p = new Person("Xavier", d);
	String msg = p.walkDog();
	System.out.println(msg);
}

c. Add this line of code to main to call the method:

testWalkDog();

d. Run the code and verify the output.

10. Next, we will use the debugger to trace the execution of the code when we call this method. Do the following:

a. Open the Person class and add a breakpoint on this line in the walkDog method:

return name + " walks dog: " + dog.walk();

Reminder: To add a breakpoint, put your cursor on the line of code above and then double-click in the blue bar in the left margin. A small circle will appear.

b. Open the PersonTest class and choose: Run, Debug. Execution should be halted at the line shown below in the Person class.

[image:]

c. Next, we step into this line. What will happen is that the Dog class will be displayed and execution is stopped in the walk method as shown below. Do this now by choosing: Run, Step Into (or press F5)

[image:]

d. Next, we step over (or into) the line. What will happen is that the line will execute and control will return to the Person class. Do this now by choosing: Run, Step Over (or press F6)
e. Press F6 three times. The result is that the message has been displayed and execution is stopped at the end of the testWalkDog method in the PersonTest class.
f. Choose: Run, Terminate (or press the red square on the tool bar).
g. Return to the Java Perspective by pressing the icon in the upper right of your screen (hover your mouse over the icons and you will see, “Java”)
h. Open the Person class and remove the breakpoint (double-click the circle in the left margin)

11. We will add a way for the Person to provide a reference to its Dog. Do the following:

a. Add this method to the Person class after the walkDog method:

	public Dog getDog() {
		return dog;
	}

b. Add this test method to PersonTest:

public static void testGetDog() {
	System.out.println("\n-->testGetDog");
	Dog d = new Dog("Juno");
	Person p = new Person("Xavier", d);
	Dog d2 = p.getDog();
	String msg = d2.walk();
	System.out.println(msg);
}

Notice that this code obtains a reference, d2 to the person’s dog and then we use it to tell the dog to walk.

c. Add this line of code to main to call the method:

testGetDog();

d. Run the code and verify the output.

[bookmark: OLE_LINK3]

Stage 2 - One-to-One Association, Two-way Navigability

In this stage we study a one-to-one association between classes with navigability in both directions.

12. [image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\02\t3.jpg](Read, no action required) Consider the class diagram shown on the right which shows that a Person has-a Dog and shows navigability in both directions. In other words, the right arrow indications that if you have a Person, you can get her Dog. The left arrow indicates that if you have a Dog you can get its owner (Person).

13. Do the following:

a. Save and close all open files.
b. Copy the association1 package and paste it giving the new name association2.

14. Do the following:

a. Open the Dog class that is in the association2 package.
b. Add a reference to the owner in the Dog class. Thus, add this instance variable to the Dog class:

private Person owner;

c. Add a getter and a setter for the owner by adding this code to the Dog class:

public Person getOwner() {
	return owner;
}

public void setOwner(Person owner) {
	this.owner = owner;
}

d. Replace the code in toString in the Dog class with :

return "dog name: " + name + ", owner:" + owner.getName();

Study the code carefully so that you understand what it is doing.

e. Open the Person class and replace the code in toString with:

return "person name: " + name + ", dog:" + dog.getName();

Study the code carefully so that you understand what it is doing.

f. Open PersonTest and replace all code (except the package statement) with:

public class PersonTest {

	public static void main(String[] args) {
		testPersonCreation();
	}
	
	public static void testPersonCreation() {
		System.out.println("-->testPersonCreation");
		Dog d = new Dog("Juno");
		Person p = new Person("Xavier", d);
		d.setOwner(p);
		System.out.println(p);
		System.out.println(d);
	}
}

Study the code in the test method carefully. The highlighted line above connects the dog to the person.

g. Run and verify the output.

Stage 3 - One-to-Many Association

In this stage we study a one-to-many association between classes.

15. (Read, no action required). This section is very important. We will be considering the 1-to-many relationship the rest of the semester.
[image: C:\Users\dgibson\OneDrive - Valdosta State University\Data-Grant\Innovation2015\labs\02\t5.jpg]
a. Consider the class diagram shown on the right which shows that a Person has-many Dogs. The “*” in the class diagram indicates the multiplicity. In this case the multiplicity is “many” (technically, it means any number of Dogs, including 0).

b. [image: G:\eDataClasses\CS 1302 - Programming 2\notes\03_ch10_OO Thinking\d5.jpg]Multiplicity in a class diagram indicates how many of one object (Dog) that another object (Person) possesses. For the example we code next (as shown on the right), we will use a multiplicity of “0..10” which means a Person can have up to 10 Dogs. We will implement the new Person class as we go along.

c. The Person class needs an instance variable hold the (up to) 10 dogs.

Dog[] dogs = new Dog[10];

d. Whenever we implement 1-many, we almost always provide an instance variable to keep track of how many items (Dogs) we have. Thus, as shown in the class diagram above, we have a numDogs instance variable:

private int numDogs = 0;
and a getter, getNumDogs:

public int getNumDogs() {
	return numDogs;
}

e. [image: G:\eDataClasses\CS 1302 - Programming 2\notes\03_ch10_OO Thinking\d1.jpg]The usual approach is to provide an “add” method to add items. Thus, we provide an addDog method. The standard approach is to store the dogs sequentially, starting at position 0. Notice that the first Dog added is added at index 0, the next at index 1, etc. And, each time we add a Dog, numDogs is incremented.

f. The getter for numDogs simply has to return the instance variable.

public int getNumDogs() {
	return numDogs;
}

g. We provide an addDog(dog:Dog) method that accepts a dog and adds it in the next available slot at the end of the array.

public void addDog(Dog dog) {
	if(numDogs<dogs.length) {
		dogs[numDogs] = dog;
		numDogs++;
	}
}

Study the addDog method carefully. Note the following:

· It first makes sure the array is not full.
· The numDogs instance variable not only stores how many dogs we currently have, it also is the position in the array where the next dog will go. Make sure you see this. Initially, there are 0 dogs. So, where does the first dog that is added go? It goes in position 0. If there are three dogs – the next dog goes in position 3.
· Finally, we increment numDogs.

h. We provide a getDog(i:int) method that accepts an index for the Dog to return. Note that we require that the index be valid: it must be between 0 and the number of dogs that have been added.

public Dog getDog(int i) {
	if(i>=0 && i<numDogs)
		return dogs[i];
	return null;
}

Notice that the stopping condition for the loop above is:

i<numDogs

A common mistake is to use the length of the dogs array:

i<dogs.length

which is incorrect because the array is not necessarily full and a runtime error would result if it is not.

16. Do the following:
a. Save & close any open files.
b. Create a new package named: association3.
c. Add a new class in that package named: Person
d. Copy the Dog class from the association1 package and paste into the association3 package.

17. Replace the code in the Person class with:

public class Person {
	private Dog[] dogs = new Dog[10];
	private int numDogs = 0;
	private String name;
	
	public Person(String name) {
		this.name = name;
	}
	
	public int getNumDogs() {
		return numDogs;
	}
	
	public void addDog(Dog d) {
		if(numDogs<10) {
			dogs[numDogs] = d;
			numDogs++;
		}
	}
	
	public Dog getDog(int i) {
		if(i>=0 && i<numDogs) {
			return dogs[i];
		}
		return null;
	}
}
18. Add a class named, PersonTest and replace the code with:

public class PersonTest {

	public static void main(String[] args) {
		testAddDog();
		testGetDog();
	}
	
	public static void testAddDog() {
		System.out.println("-->testAddDog");
		Person p = new Person("Wilma");
		System.out.println("Num dogs before addDog:" + p.getNumDogs());
		p.addDog(new Dog("Zoro"));
		System.out.println("Num dogs after addDog:" + p.getNumDogs());
		p.addDog(new Dog("Gigi"));
		System.out.println("Num dogs after addDog:" + p.getNumDogs());
	}

	public static void testGetDog() {
		System.out.println("\n-->testGetDog");
		Person p = new Person("Wilma");
		p.addDog(new Dog("Zoro"));
		p.addDog(new Dog("Gigi"));
		p.addDog(new Dog("Chaps"));
		
		for(int i=0; i<p.getNumDogs(); i++) {
			Dog d = p.getDog(i);
			System.out.println(d);
		}
	}
}

19. Study the test code, run, and verify the output. Note in testGetDog how we loop over all the dogs:

for(int i=0; i<p.getNumDogs(); i++) {
	Dog d = p.getDog(i);
	System.out.println(d);
}

The Person classes’ getDog method knows how many dogs there are.

20. Do the following:

a. Open the Person class and add this toString method:

@Override
public String toString() {
	String msg = "";
	msg = String.format("Person:%s, Dogs:\n", name);
	for(int i=0; i<numDogs; i++) {
		msg += String.format(" %s\n", dogs[i].getName());
	}
	return msg;
}

Study this code carefully. Notice that we loop over the dogs array building a string with each dog’s name. As noted before, the loop does not loop over the entire array (dogs.length), it only loops over the actual number of dogs that have been added, numDogs. Make sure you understand this.

b. Open the PersonTest class and add this test method:

public static void testToString() {
	System.out.println("-->testToString");
	Person p = new Person("Wilma");
	p.addDog(new Dog("Zoro"));
	p.addDog(new Dog("Gigi"));
	p.addDog(new Dog("Chaps"));
	System.out.println(p);
}

c. Add this call to the method in main:

testToString();

d. Run and verify the output.

21. Next, we provide a method that allows the Person to walk all her Dogs. Do the following:

a. Add this method to the Person class:

public String walkDogs() {
	String msg = "Dog's are walking...:\n";
	for(int i=0; i<numDogs; i++) {
		msg += " " + dogs[i].walk() + "\n";
	}
	return msg;
}

Notice that the method loops over the actual number of Dogs and asks each Dog to walk.

b. Add this test method to the PersonTest class:

public static void testWalkDogs() {
	System.out.println("-->testWalkDogs");
	Person p = new Person("Sheena");
	p.addDog(new Dog("Ace"));
	p.addDog(new Dog("Leo"));
	p.addDog(new Dog("Fritzy"));
	String msg = p.walkDogs();
	System.out.println(msg);
}

c. Add a call to this method in main:

testWalkDogs();

d. Run and verify the output.

Stage 4 - One-to-Many, Remove Methods

Next, we consider removing a dog from a person’s array of dogs. We will do this incrementally, by first considering the easiest case, removing the last dog. Thus, below, we will see how to implement the removeLastDog method. After this, we consider, removeFirstDog. Finally, we consider, removeDog(position).

22. (Read, no action required) We provide a method, removeLastDog, to remove the last dog and return it (typically, remove methods not only remove the item, but also return it).

a. [bookmark: _Hlk30149384]Where is the last dog located? We know that numDogs contains the position where the next dog would be added. Thus, if we subtract 1 from numDogs, that will be the location of the last dog. Look very carefully at the method below (either version) and verify that it is returning the last dog and decrementing the number of dogs.

	Method
	Alternate Version

	public Dog removeLastDog() {
	if(numDogs>0) {
		numDogs--;
		return dogs[numDogs];
	}
	return null;
}
	public Dog removeLastDog() {
 if(numDogs>0) {
 return dogs[--numDogs];
 }
 return null;
}

b. [image:]Now, follow the example below. Note, we didn’t actually remove the last dog, we just decremented the number of dogs. Thus, even though the last dog is still at index 2 in the example below, it is unavailable because addDog, getDog, etc all depend on numDogs. If this is not perfectly clear, consider executing this line of code at the end of the example below: d=p.getDog(2). Now go back and look at the getDog method and see that it will return null.

23. Next, we add and test the removeLastDog method. Do the following:

a. Add this method to the Person class:

public Dog removeLastDog() {
	if(numDogs>0) {
		numDogs--;
		return dogs[numDogs];
	}
	return null;
}

b. Add these test methods to the PersonTest class:

public static void testRemoveLastDog_3_Dogs() {
	System.out.println("-->testRemoveLastDog_3_Dogs");
	Person p = new Person("Paul");
	p.addDog(new Dog("Ace"));
	p.addDog(new Dog("Leo"));
	p.addDog(new Dog("Fritzy"));
	
	System.out.println("Dogs before removeLastDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	
	Dog d = p.removeLastDog();
	
	System.out.println("Dogs after removeLastDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	System.out.println("Dog removed:" + d);
}

[bookmark: _Hlk49856817][bookmark: _GoBack]public static void testRemoveLastDog_0_Dogs() {
	System.out.println("-->testRemoveLastDog_0_Dogs");
	Person p = new Person("Paul");
	
	System.out.println("Dogs before removeLastDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	
	Dog d = p.removeLastDog();
	
	System.out.println("Dogs after removeLastDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	System.out.println("Dog removed:" + d);
}

c. Add a call to these methods in main:

testRemoveLastDog_3_Dogs();
testRemoveLastDog_0_Dogs();

d. Study the test code carefully, run, and verify the output.

24. (Read, no action required) Next, we provide a method to remove the first dog and return it. The standard approach is to make sure the array holding the dogs has no “holes” in it. Thus, when we remove a dog, we move all the dogs to the right of it over one position to the left.

a. Consider the example showing on the right in the table below: 3 dogs are added, then removeFirstDog is called and the 2 dogs to the right are moved over one position to the left.

b. Notice (as we said before) that the last dog, zoro in the example below, appears twice, once in its new position (index=1), and once in its original position (index=2). However, we decremented the number of dogs. Thus, even though the last dog is also still at index 2, it is unavailable because getDog, toString, etc all depend on numDogs, which is 2.

c. The algorithm:

1. Get a reference to the first dog
2. Move all the other dogs over one position to the left
3. Decrement the number of dogs
4. Return the first dog

d. The removeFirstDog method is shown on the left in the table below.

	Method
	Example

	public Dog removeFirstDog() {
 if(numDogs>0) {
 Dog returnDog = dogs[0];
 for(int i=1; i<numDogs; i++) {
 dogs[i-1] = dogs[i];
 }
 numDogs--;
 return returnDog;
 }
 return null;
}

	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\03_ch10_OO Thinking\d3.jpg]

25. Next, we add and test the removeFirstDog method. Do the following:
a. Add this method to the Person class:

public Dog removeFirstDog() {
	if(numDogs>0) {
		Dog returnDog = dogs[0];
		for(int i=1; i<numDogs; i++) {
			dogs[i-1] = dogs[i];
		}
		numDogs--;
		return returnDog;
	}
	return null;
}
b. Add these test methods to the PersonTest class:

public static void testRemoveFirstDog_3_Dogs() {
	System.out.println("-->testRemoveFirstDog_3_Dogs");
	Person p = new Person("Paul");
	p.addDog(new Dog("Ace"));
	p.addDog(new Dog("Leo"));
	p.addDog(new Dog("Fritzy"));
	
	System.out.println("Dogs before removeFirstDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	
	Dog d = p.removeFirstDog();
	
	System.out.println("Dogs after removeFirstDog:");
	for(int i=0; i<p.getNumDogs(); i++) {
		System.out.println((i+1) + ". " + p.getDog(i));
	}
	System.out.println("Dog removed:" + d);
}

public static void testRemoveFirstDog_0_Dogs() {
	System.out.println("-->testRemoveFirstDog_0_Dogs");
	Person p = new Person("Paul");
	
	System.out.println("Num dogs before removeFirstDog:" + p.getNumDogs());
	
	Dog d = p.removeFirstDog();
	
	System.out.println("Num dogs after removeFirstDog:" + p.getNumDogs());
	System.out.println("Dog removed:" + d);
}

c. Add a call to these methods in main:

testRemoveFirstDog_3_Dogs();
testRemoveFirstDog_0_Dogs();

d. Study the test code carefully, run, and verify the output.

26. (Read, no action required) Finally, we provide a method, removeDog(index:int) to remove the dog at a particular index and return it. Similar to removeFirst, we must move all the dogs after the one we remove, one position to the left. An algorithm:

1. If the index is valid
a. Get a reference to the dog at the index
b. Loop over the dogs to the right of the one at the index
· Move current dog one position to the left.
c. Decrement the number of dogs
d. Return the dog that was at the index.
2. Else, return null.

Study the code and example carefully, making sure you understand the loop and how it implements step 1b above.

	Method
	Example

	public Dog removeDog(int i) {
 if(i>=0 && i<numDogs) {
 Dog returnDog = dogs[i];
 for(int j=i+1; j<numDogs; j++) {
 dogs[j-1] = dogs[j];
 }
 numDogs--;
 return returnDog;
 }
 return null;
}

	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\03_ch10_OO Thinking\d4.jpg]

27. Do the following:

a. Add the removeDog method to the Person class:

public Dog removeDog(int i) {
	if(i>=0 && i<numDogs) {
		Dog returnDog = dogs[i];
		for(int j=i+1; j<numDogs; j++) {
			dogs[j-1] = dogs[j];
		}
		numDogs--;
		return returnDog;
	}
	return null;
}

b. Write these three test methods in PersonTest:

// Add 4 dogs and then remove from index=1
public static void testRemoveDog_From_Middle_4_Dogs() {
	
}

// Add 4 dogs and then remove from index=3
public static void testRemoveDog_From_End_4_Dogs() {
	
}

// Add 4 dogs and then remove from index=0
public static void testRemoveDog_From_Beginning_4_Dogs() {
	
}
c. Add calls to the new methods, run the test code, and verify the output.

Stage 5 - The StringBuilder Class

In this stage we consider the StringBuilder class.

28. (Read, no action required)

a. [image: E:\Data-Classes\CS 1302 - Programming 2\notes\03_ch10_OO Thinking\aa1.jpg]The StringBuilder class is similar to the String class in that it represents a sequence of characters. However, a StringBuilder is much more efficient when the underlying characters are modified or appended, as it does not create a new “string” for every change. Some of its methods are shown in the class diagram on the right.

b. You should use StringBuilder any time you need to build or modify a String repeatedly through a loop. At the conclusion, simply call toString.

c. The example below will only consider the 3 most useful methods:

· StringBuilder(s:String) – Constructor, creates a StringBuilder object with the initial string, s.
· append(s:String) – Add s to the string inside the StringBuilder object.
· toString() – Returns the string inside the StringBuilder object.

29. Do the following

a. Create a new package named: stringbuilder_examples
b. Create a new class in the stringbuilder_examples package named: StringBuilderExample
c. Replace the code (except package statement) with:

public class StringBuilderExample {

	public static void main(String[] args) {
		testStringBuilder();
	}
	
	public static void testStringBuilder() {
		String[] pets = {"Chaps", "Moco", "Zoro", "Ace"};

		StringBuilder sb = new StringBuilder("My Pets:\n");

		for(int i=0; i<pets.length; i++) {
			sb.append((i+1) + ". " + pets[i] + "\n");
		}
		sb.append("There are " + pets.length + " in total");
		System.out.println(sb.toString());	
	}

}

d. Study the code carefully. Run and observe the output.

30. If you need to build a string from an arbitrary number of values you should use StringBuilder as opposed to concatenating Strings as it is much more efficient, especially when the number of values can be large. Next, we will do an experiment to compare using StringBuilder and String concatenation to build a large string. Do the following:

a. Add this method to the StringBuilderExample class:

public static void testStringBuilderEfficiency() {
	int size = 25000;
	double[] vals = buildRandomDoubleArray(size);
	String doubleString1 = testStringConcat(vals);
	String doubleString2 = testStringBuilderConcat(vals);
}

(Read, no action required). This method calls three methods that we will add in just a minute:

· buildRandomDoubleArray – Builds an array of 25,000 random doubles.
· testStringConcat – Builds a string with all the 25,000 doubles with a comma and a space between each one.

String doublesString = "";
for(double d : vals) {
	doublesString += d + ", ";
}

· testStringBuilderConcat – Builds a string (using StringBuilder) with all the 25,000 doubles with a comma and a space between each one.

StringBuilder doublesString = new StringBuilder();
for(double d : vals) {
	doublesString.append(d + ", ");
}

The later two methods have code built into them to time how long they take. The code will display the results of the experiment. You will be surprised at the results.

b. Add these 3 methods to the StringBuilderExample class:

	public static double[] buildRandomDoubleArray(int size) {
		double[] vals = new double[size];
		for(int i=0; i<vals.length; i++) {
			vals[i] = Math.random()*1000.0;
		}
		return vals;
	}
	
	public static String testStringConcat(double[] vals) {
		System.out.println("testStringConcat()");
	 long begTime = System.currentTimeMillis();
		String doublesString = "";
		for(double d : vals) {
			doublesString += d + ", ";
		}
		long endTime = System.currentTimeMillis();
	 double totTime = (endTime-begTime)/1000.0;
	 String msg = String.format(" Concatenate %,d doubles = %.3f sec", vals.length, totTime);
	 System.out.println(msg);
		return doublesString;
	}
	
	public static String testStringBuilderConcat(double[] vals) {
		System.out.println("testStringBuilderConcat()");
	 long begTime = System.currentTimeMillis();
		StringBuilder doublesString = new StringBuilder();
		for(double d : vals) {
			doublesString.append(d + ", ");
		}
		long endTime = System.currentTimeMillis();
	 double totTime = (endTime-begTime)/1000.0;
	 String msg = String.format(" Concatenate %,d doubles = %.3f sec", vals.length, totTime);
	 System.out.println(msg);
 	 return doublesString.toString();
	}

c. Add this line to main to call the method:

testStringBuilderEfficiency();

d. Comment out the call to any other method calls in main.

e. Run the code and observe the output.

f. Change 25000 to 30000 in testStringBuilderEfficiency, rerun and observe the output.

Submission

31. Do the following

a. Make sure all your files are saved in Eclipse.
b. Although not necessary, I recommend closing Eclipse.
c. Zip the four folders (packages) under the src folder: association1, association2, association3, stringbuilder_examples into a zip file named: lab5_lastname.zip
d. Upload your zip file to the lab5 dropbox in Blazeview.

1

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image1.jpeg

image2.jpeg

