CS 1302 – Lab 11

This is a tutorial covering Lists: ArrayList, LinkedList, and PriorityQueue. There are 6 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	The ArrayList Class
	20.2, 20.4

	2
	The LinkedList Class
	20.4

	3
	Speed Comparison: ArrayList vs. LinkedList
	20.4

	4
	Iterators
	

	5
	The Comparator Interface
	20.5

	6
	Static Methods for Lists & Collections
	20.6

	7
	binarySearch vs. indexOf Search, Speed Comparison
	

To make this document easier to read, it is recommend that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - The ArrayList Class

In this stage we will demonstrate some of the methods in the ArrayList class that we have not considered before.

1. Read (no action required) –

a. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\09_Ch 20 - List, Stack, Q, Priorty Q\a1.jpg]A collection in programming is a general term to refer to any class that holds a group of items. The ArrayList class (Ch. 11) is a collection and so is an array, and a Stack. In this chapter we will study a number of other collection classes.

b. The ArrayList class inherits its behaviors through the interfaces shown on the right. Note that Collection is the root interface and List is a subinterface. (Two abstract subclasses: AbstractCollection and AbstractList implement the behaviors).

c. In this stage, we will consider some of the methods shown in red in the class diagram above.

2. Setup – Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.
b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use.
c. Create a Project – Create a Java project with the name, lab09_lastNameFirstInitial, e.g. lab09_gibsond.
d. Create a package named list_examples.

3. Run Example

a. Read (no action required) – The addAll method:

public bool addAll(Collection<? Extends E> c)

accepts any Collection whose generic type is the same (or subtype) as the type of the ArrayList and adds those elements to the ArrayList. In other words, addAll is similar to a set union, but it doesn’t create a new set, it puts the result in the calling collection. addAll returns true if the calling collection is modified, but in the examples below, we won’t catch the return value.

b. Create a class named ArrayListExamples (in the list_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.List;

public class ArrayListExamples {

	public static void main(String[] args) {
System.out.println("ArrayList Examples\n");
		example1();
	}
	
	// Illustrates addAll, retainAll, removeAll methods
	private static void example1() {
	 System.out.println("example1()-illustrates addAll, retainAll, removeAll methods)");
	 System.out.println("--");
	 ArrayList<String> cities = new ArrayList<String>();
	 cities.add("New York");
	 cities.add("San Francisco");
	 System.out.println("cities: " + cities);
	
		// Create another ArrayList of cities
	 ArrayList<String> cities2 = new ArrayList<>();
	 cities2.add("Charlotte");
	 cities2.add("Atlanta");
	 System.out.println("cities2: " + cities2);
	
	 // addAll() - Adds all the elements of "cites2" to "cities1".
	 // This is the union of two lists.
	 cities.addAll(cities2);
	 System.out.println("cities after cities.addAll(cities2): " + cities);
	}
}

c. Your objective is to understand how addAll works. Study the code carefully and then run and verify the output.

d. Read (no action required) – The retainAll method:

public bool retainAll(Collection<? Extends E> c)

accepts any Collection, c, whose generic type is the same (or subtype) as the type of the ArrayList and removes from the ArrayList that are not also found in c. Another way to say this is that retainAll keeps all the elements in the ArrayList that also exist in c. In other words, it does a set intersection storing the result in the calling object. (retainAll also returns true if the calling collection is modified, but in the examples below, we won’t catch the return value.)

e. Add the code below to the bottom of the example1 method:

// Create another ArrayList of cities
ArrayList<String> cities3 = new ArrayList<>();
cities3.add("Charlotte");
cities3.add("Durango");
cities3.add("New York");
System.out.println("\ncities: " + cities);
System.out.println("cities3: " + cities3);

// retainAll() - This method takes the intersection of the two lists
// and stores the result in "cities".
cities.retainAll(cities3);
System.out.println("cities after cities.retainAll(cities3):" + cities);

f. Your objective is to understand how retainAll works. Study the code carefully and then run and verify the output.

g. Read (no action required) – The removeAll method:

public bool removeAll(Collection<? Extends E> c)

accepts any Collection, c, whose generic type is the same (or subtype) as the type of the ArrayList and removes from the ArrayList those elements that are also in c. In other words, it does a set subtraction. (removeAll also returns true if the calling collection is modified, but in the examples below, we won’t catch the return value.)

h. Add the code below to the bottom of the example1 method:

	 // Add a few more cities to "cities"
	 cities.add("Rock Hill");
	 cities.add("Little Rock");
	 System.out.println("\ncities: " + cities);
		// Create another ArrayList of cities
	 ArrayList<String> cities4 = new ArrayList<>();
	 cities4.add("Charlotte");
	 cities4.add("Seattle");
	 cities4.add("Little Rock");
	 System.out.println("cities4: " + cities4);
	
	 // removeAll() - Removes from "cities" any cities that are also in "cities4".
	 // This is set subtraction.
	 cities.removeAll(cities4);
	 System.out.println("cities after cities.removeAll(cities4): " + cities);

i. Your objective is to understand how removeAll works. Study the code carefully and then run and verify the output.

4. Run Example

a. Read (no action required) – The subList method:

public List<E> subList(int fromIndex, int toIndex)

accepts two indices into the ArrayList and returns a List of the elements in the ArrayList from the fromIndex to toIndex-1.

The ArrayList class has a constructor that accepts another collection and builds a new collection with these values. We will see an example of this below in the line highlighted yellow.

b. Add this method below to the ArrayListExamples class.

// Illustrates subList method and alternate constructor
private static void example2() {
 System.out.println("\nexample2()-illustrates subList method and alternate constructor)");
 System.out.println("---");
	ArrayList<String> cities = new ArrayList<String>();
	cities.add("New York");
	cities.add("San Francisco");
	cities.add("Charlotte");
	cities.add("Atlanta");
	cities.add("Durango");
	
	System.out.println("cities: " + cities);
	
	// Returns a List, not an ArrayList
	List<String> cities2 = cities.subList(2, 4);

	System.out.println("List<String> cities2 = cities.subList(2,4): " + cities2);
	
	// Can create an ArrayList from any Collection (List, ArrayList, etc)
	ArrayList<String> cities3 = new ArrayList<>(cities2);
	System.out.println("ArrayList<String> cities3: " + cities3);
}

c. Add a call to this method in main.

example2();

d. Your objective is to understand how subList works and how to create a new ArrayList from some other Collection. Study the code carefully and then run and verify the output.

e. Read (no action required) – Note that an ArrayList can contain duplicate items. For example:

	cities.add("New York");
	cities.add("New York");

will produce two “New York”’s in cities. If we used the remove(e:E) method on a collection with a duplicate item, it would remove the first occurrence only. We illustrate this next.

f. Add this code to the end of the example2 method.

// Add a duplicate city to cities3
cities3.add("Charlotte");
System.out.println("\ncities3: " + cities3);

cities3.remove("Charlotte");
System.out.println("cities3 after cities3.remove('Charlotte'): " + cities3);

g. Your objective is to understand how duplicates are handled. Study the code carefully and then run and verify the output.

Stage 2 - The LinkedList Class

In this stage we consider the LinkedList class which is another type of Collection (and List).

1. Read (no action required) –

a. The LinkedList class, shown in the class diagram below is very similar to the ArrayList class in that they both implement the List and Collection interfaces. Almost anything you can do with an ArrayList, you can do with a LinkedList. Internally, they are implemented differently which is something we will discuss in class. However, this is important because LinkedList can be faster in some situations, which we will see in an example later.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\09_Ch 20 - List, Stack, Q, Priorty Q\a2.jpg]

b. In addition, the LinkedList class introduces a few convenience methods (shown in red above) for operating on the first and last elements in the collection. They are called convenience methods because they are equivalent to methods that already exist in the List interface as shown below:

	LinkedList
	List

	list.addFirst(x)
	list.add(0,x)

	list.addLast(x)
	list.add(x)

	list.getFirst()
	list.get(0)

	list.getLast()
	list.get(list.size-1)

	list.removeFirst()
	list.remove(0)

	list.removeLast()
	list.remove(list.size-1)

2. Run Example – We will make a copy of the ArrayListExamples class, rename all occurrences of ArrayList to LinkedList, run, and observe that the functionality is the same.

a. Save and close ArrayListExamples.
b. Select ArrayListExamples in the Package Explorer and copy
c. Select the list_examples package and paste supplying the new name, LinkedListExamples.
d. Open LinkedListExamples
e. Choose: Edit, Find/Replace (or Ctrl+F)
f. For the Find value type: “ArrayList”
g. For the Replace with value type: “LinkedList”
h. Press the “Replace All” button and then “Close”
i. Run and observe that the output is identical to when we used ArrayList.
Stage 3 - Speed Comparison: ArrayList vs. LinkedList

In this stage we will do an experiment to compare how much time it takes to insert values into the first position in an ArrayList compared to a LinkedList.

1. Read (no action required) –

a. Consider the following experiment: Suppose we have an ArrayList that initially contains 100,000 random integers. We will time how long it takes to insert 100,000 random integers into this ArrayList. Thus, at the conclusion there will be 200,000 integers in the list. Here is an algorithm:

Create an ArrayList, list with 100,000 random integers.
Create an ArrayList, vals with 100,000 random integers
Start timing
For(int x : vals)
	list.add(0,x)
Stop timing

b. Next, consider repeating this experiment where the ArrayList (list) initially has 200,000 random integers, then 300,000, …, 500,000. In each case we will still insert just 100,000 into each list.

c. Finally, repeat all the above except using a LinkedList.

d. We will utilize the method below in our timing experiment later. For now, let’s examine how it works. The doExperiment method below accepts a list (either ArrayList or LinkedList) initialized with some number of integers and inserts the integers in vals into this list, timing the entire process.

public static void doExperiment(List<Integer> list, List<Integer> vals) {
	 // Begin timing
 long begTime = System.currentTimeMillis();
	 // Do insertions
 for(int x : vals) {
 	list.add(0,x);
 }
	// Stop timing
	long endTime = System.currentTimeMillis();
	// Calculate total time in seconds.
 double totTime = (endTime-begTime)/1000.0;
 System.out.println(totTime);
}

e. The main driver that we will use is shown below. Read and understand the code in main. Main uses a method, generateArrayList that creates an ArrayList with a specified number of random integers.

	static final int[] INITIAL_LIST_SIZE = {100000, 200000, 300000, 400000, 500000};
	static final int NUM_INSERTIONS = 100000;

	public static void main(String[] args) {

		for(int listSize : INITIAL_LIST_SIZE) {
			// Create values to insert
			ArrayList<Integer> valsToInsert = generateArrayList(NUM_INSERTIONS);
			// Create ArrayList
			ArrayList<Integer> aryList = generateArrayList(listSize);
			// Create LinkedList from ArrayList
			List<Integer> lnkList = new LinkedList<>(aryList);

			doExperiment(aryList, valsToInsert);
			doExperiment(lnkList, valsToInsert);
		}
	}

2. Run Example

a. Create a class named SpeedComparison (in the list_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;

public class SpeedComparison {

	static final int[] INITIAL_LIST_SIZE = {100000, 200000, 300000, 400000, 500000};
	static final int NUM_INSERTIONS = 100000;

	public static void main(String[] args) {

		for(int listSize : INITIAL_LIST_SIZE) {
			// Create values to insert
			ArrayList<Integer> valsToInsert = generateArrayList(NUM_INSERTIONS);
			// Create ArrayList
			ArrayList<Integer> aryList = generateArrayList(listSize);
			// Create LinkedList from ArrayList
			List<Integer> lnkList = new LinkedList<>(aryList);

			doExperiment(aryList, valsToInsert);
			doExperiment(lnkList, valsToInsert);
		}
	}

	public static ArrayList<Integer> generateArrayList(int numValues) {
		ArrayList<Integer> ints = new ArrayList<>();
		for(int i=0; i<numValues; i++) {
			// Generate an integer between 0 and max int
			int val = (int)(Math.random()*Integer.MAX_VALUE);
			ints.add(val);
		}
		return ints;
	}

	public static void doExperiment(List<Integer> list, List<Integer> vals) {
		// Use for output
		String className = list.getClass().getName();
		int locPeriod = className.lastIndexOf(".");
		className = className.substring(locPeriod+1);
	 String msg = String.format("%s size: %d, time to add %d vals: ", className, list.size(), vals.size());
	
		// Begin timing
	 long begTime = System.currentTimeMillis();
	
	 for(int x : vals) {
	 	list.add(0,x);
	 }
		// Stop timing
		long endTime = System.currentTimeMillis();
		// Calculate total time in seconds.
	 double totTime = (endTime-begTime)/1000.0;
	 msg += String.format("%.3f sec", totTime);
	 System.out.println(msg);
	}
}

b. Run the code. It will probably take close to a minute to finish. Study the results, they probably will be astounding!

Stage 4 - Iterators

1. [image: E:\Data-Classes\CS 1302 - Programming 2\notes\11_Ch 22 - JCF\pics\it.jpg]Read (no action required) – Every Collection has an iterator method that returns an Iterator object. The Iterator interface is shown on the right. An Iterator object serves two functions: (a) a way to iterate over all the objects in a collection without having to know how they are stored in the collection (we will talk in class about what this means). (b) a way to remove items from a collection while you are iterating over it.

2. Create a class named IteratorExamples in the list_examples package. Copy this code in and run.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;

public class IteratorExamples {
	public static void main(String[] args) {
		iterateWithIterator();
	}
	public static void iterateWithIterator() {
		System.out.println("iterateWithIterator()\n");
		ArrayList<String> cities = new ArrayList<>(Arrays.asList("Dallas",
				"New York", "San Fransico", "Madison"));

		System.out.println("Iterator:");
		Iterator<String> iter = cities.iterator();
		while(iter.hasNext()) {
			String city = iter.next();
		 System.out.println(city);
		}
		System.out.println();

	}
}
Note that the iterator produces the same results as using one of the other techniques for iterating over a collection
System.out.println("For-each loop:");
for(String city : cities) {
 System.out.println(city);
}
System.out.println();

System.out.println("Indexed loop:");
for(int i=0; i<cities.size(); i++) {
 System.out.println(cities.get(i));
}

So, what does an iterator do for us? We will see shortly.

3. Do the following:

Here, we will try to remove all cities with the name “New York” from the list.

a. Add this method to the class:

public static void removeWithForeachLoopIncorrect() {
	System.out.println("\nRemove with foreach loop, incorrect");

	// Notice that there are 2 "New Yorks" in list
	ArrayList<String> cities = new ArrayList<>(Arrays.asList("Dallas",
			"New York", "San Fransico", "Madison"));

	// Remove cities whose name is "New York"
	for(String city : cities) {
		if(city.equals("New York")) {
			cities.remove(city);
		}
	}
}

b. Add a call to the method in main.
c. Run and observe the exception that is thrown. The lesson we learn from this is you can not change (add or remove) from a collection while you are iterating over it with a for-each loop.
d. Comment out the call to this method in main.

4. Do the following:

Again, we will try to remove all cities with the name “New York” from the list.

a. Add this method to the class

public static void removeWithLoopIncorrect() {
	System.out.println("\nRemove with loop, incorrect");
	
	// Notice that there are 2 "New Yorks" in list
	ArrayList<String> cities = new ArrayList<>(Arrays.asList("Dallas",
			"New York", "New York", "San Fransico", "Madison"));

	System.out.println("\nBefore removing New York");
	System.out.println(cities);

	// loop approach
	for(int i=0; i<cities.size(); i++) {
		if(cities.get(i).equals("New York")) {
			cities.remove(i);
		}
	}
	System.out.println("\nAfter removing New York");
	System.out.println(cities);
}

b. Add a call to the method in main.
c. Run and observe that only one of the “New York” was removed. Can you figure out why?

5. Do the following:

Using an iterator is the way to remove from a list.

a. Add this method to the class

public static void removeWithIterator() {
	// Notice that there are 2 "New Yorks" in list
	ArrayList<String> cities = new ArrayList<>(Arrays.asList("Dallas",
			"New York", "New York", "San Fransico", "Madison"));
	
	System.out.println("\nRemove with iterator");

	System.out.println("\nBefore removing New York");
	System.out.println(cities);

	// iterator()
	Iterator<String> iter = cities.iterator();
	while(iter.hasNext()) {
		String city = iter.next();
		if(city.equals("New York")) {
			iter.remove();
		}
	}
	System.out.println("\nAfter removing New York");
	System.out.println(cities);

}

b. Add a call to the method in main.
c. Run and observe that both “New York” were removed.

Stage 5 - The Comparator Interface

In this stage we consider the Comparator interface which can be implemented to sort custom objects and is similar to the Comparable interface but is more flexible.

1. Read (no action required) –

a. Comparator is an interface in Java. When implemented, it is used to compare objects, to see which one is “larger”, “smaller”, or if they are “equal”. It defines two methods, compare and equals as shown in the class diagram on the left below. The compare method takes two objects of generic type T and compares them returning a value as shown in the table below (Note: this is the same meaning as the return of the compareTo method in the Comparable interface):

	[image: E:\Data-Classes\CS 1302 - Programming 2\notes\09_Ch 20 - List, Stack, Q, Priorty Q\a2.jpg]
		Return
	Condition

	Negative Integer
	

	Zero
	

	Positive Integer
	

(The equals method indicates whether some other Object, o is equal to this Comparator. We will not consider this method and we won’t have to actually implement it because any concrete Comparator class that we define that implements Comparator automatically extends Object which has a default implementation for equals.)

b. Comparator is useful because it allows us to sort, for instance a collection of Employee objects in much the same way we used the Comparable interface to sort custom objects. However, it is much more flexible in that you can define multiple Comparators for a class. For example, for an Employee class we may define a Comparator to compare Employee objects based on the name field, another Comparator to compare based on the SSN field, and another to compare based on the salary field. With Comparable, we could only define one way to compare objects. Next, we exaplain how Comparator is used and then later we provide examples.

2. Read (no action required) – Here is an example of how this works:

a. Write a class, e.g. Employee

public class Employee {
	private String name;
	private int ssNum;
	private double salary;

	public Employee(String name, int ssNum, double salary) {
		this.name = name;
		this.ssNum = ssNum;
		this.salary = salary;
	}
	...
}

b. Write a comparator class to compare Employee objects based on their SSN

public class EmployeeSSNComparator implements Comparator<Employee> {
	public int compare(Employee e1, Employee e2) {
		return e1.getSSNum() - e2.getSSNum();
	}
}

c. Create a list of Employee objects

List<Employee> employees = new LinkedList<>();
employees.add(new Employee("Boggs", 716533892, 12.57));
...

d. Create a Comparator:

EmployeeSSNComparator comp = new EmployeeSSNComparator();
	
e. The Collections class defines an overloaded sort method that accepts a List and a Comparator to define the sorting order. Thus, we can sort the Collection by passing the list and the Comparator:

Collections.sort(employees, comp);

3. Example – We will create an Employee class, a Comparator to compare Employees on SSN, and then sort a list of these objects based on SSN.

a. Create a package named comparator_examples.

b. Create a class named Employee (in the comparator_examples package) and replace everything in the class (except the package statement at the top) with:

public class Employee {
	private String name;
	private int ssNum;
	private double salary;

	public Employee(String name, int ssNum, double salary) {
		this.name = name;
		this.ssNum = ssNum;
		this.salary = salary;
	}

	public String getName() { return name; }
	public int getSSNum() { return ssNum; }
	public double getSalary() { return salary; }

	public String toString() {
		return String.format("Name: %-8s - SSN: %d\tSalary: $%.2f", getName(),
 getSSNum(), getSalary());
	}
}

c. Create a class named EmployeeSSNComparator (in the comparator_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Comparator;

public class EmployeeSSNComparator implements Comparator<Employee> {
	public int compare(Employee e1, Employee e2) {
		return e1.getSSNum() - e2.getSSNum();
	}
}

d. Create a class named EmployeeTest (in the comparator_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

public class EmployeeTest {

	public static void main(String[] args)
	{
		// Create list of employees
		List<Employee> employees = new LinkedList<>();

		// Put employees in list
		employees.add(new Employee("Boggs", 716533892, 12.57));
		employees.add(new Employee("Lyton", 476227851, 77.88));
		employees.add(new Employee("Orville", 553572246, 22.32));
		employees.add(new Employee("Dern", 243558673, 23.44));
		System.out.println("Original List");
		printList(employees);

		// Create comparator
		EmployeeSSNComparator ssnComp = new EmployeeSSNComparator();
		// Sort list based on SSN
		Collections.sort(employees, ssnComp);
		System.out.println("\nSorted on SSN");
		printList(employees);

	}

	private static void printList(List<Employee> emps) {
		for(Employee e : emps) {
			System.out.println(" " + e);
		}
	}

}

e. Run the code and verify the output.

4. Example – Next, we will create a Comparator to compare Employees on name, and then sort a list of these objects based on name.

a. Create a class named EmployeeNameComparator (in the comparator_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.Comparator;

public class EmployeeNameComparator implements Comparator<Employee> {
	public int compare(Employee e1, Employee e2) {
		return e1.getName().compareTo(e2.getName());
	}
}

b. Add these lines of code to the bottom of main in EmployeeTest.

EmployeeNameComparator nameComp = new EmployeeNameComparator();
Collections.sort(employees, nameComp);
System.out.println("\nSorted on Name");
printList(employees);

c. Run the code and verify the output.

5. Your Turn – Create a Comparator to compare Employee objects based on salary. Be carefull: it won’t be quite as simple as the SSN comparator as salary is a double. Add lines of code to main in EmployeeTest to test. Run and verify the output. If you can’t get the comparator to work, the solution is on the next page. But, try to do it yourself!

Stage 6 - Static Methods for Lists & Collections

In this stage we show some of the static methods contained in the Collections class that can utilize a Comparator. We already saw that the sort method can accept a Comparator.

1. Read (no action required) – The max and min methods of the Collections class are overloaded to accept a Comparator. For example, suppose we have a list of Employee objects as in the previous stage. We could find the Employee with the largest (and smallest) SSN with these statements:

EmployeeSSNComparator ssnComp = new EmployeeSSNComparator();
...
// Get employee with largest and smallest SSN
Employee eMax = Collections.max(employees, ssnComp);
Employee eMin = Collections.min(employees, ssnComp);

2. Example –

a. Add these lines of code to the bottom of main in EmployeeTest.

// Get employee with largest and smallest SSN
Employee eMax = Collections.max(employees, ssnComp);
Employee eMin = Collections.min(employees, ssnComp);
System.out.println("\nEmployee with largest SSN: " + eMax);
System.out.println("Employee with smallest SSN: " + eMin);

// Get employee with largest and smallest name
eMax = Collections.max(employees, nameComp);
eMin = Collections.min(employees, nameComp);
System.out.println("\nEmployee with 'largest' Name: " + eMax);
System.out.println("Employee with 'smallest' Name: " + eMin);

b. Run the code and verify the output.

3. Read (no action required) – The binarySearch static method of the Collections class is used to search for an item in a collection. The list must be sorted for this method to work. The general syntax is:

int pos = Collections.binarySearch(list, objectToSearchFor, comparator);

Note the following:

	Variable
	Description

	list
	List to be searched. Must have previously been sorted using comparator.

	objectToSearchFor
	This is the object we are searching for. But why are we searching for an object if we already have it? The idea is that we may only know the SSN for Employee and want to find the complete Employee object with a matching SSN. To do this, we will create a dummy employee with the information we have. For example, suppose we know the SSN (243558673) of the employee we want to look for, we would create a dummy Employee like this:

Employee eKey = new Employee("don't know", 243558673, -9999.0);

Notice that we simply made up a value for the name and salary.

	comparator
	This specifies how we want to compare objects. The binary search algorithm needs to know if we are looking for an Employee based on SSN, or name, or salary, for instance.

	pos
	If the search is successful, the pos contains the index of the location of the matching object in list. Thus, we can obtain the Employee object that matches with a statement like this:

Employee e = employees.get(pos);

If the search is not successful, a negative number is returned. This number has meaning which we will discuss in class.

Let’s summarize this process for the situation where we are looking for an Employee object in a List with a matching SSN:

a. Ask the user what the SSN is for the Employee object they want to search for. (Suppose that value is: 243558673).

b. Next, we create a dummy employee using just the information we have (the SSN):

Employee eKey = new Employee("don't know", 243558673, -9999.0);

c. Make sure list is sorted according to SSN:

EmployeeSSNComparator ssnComp = new EmployeeSSNComparator();
Collections.sort(employees, ssnComp);

d. Do the binary search:

int pos = Collections.binarySearch(employees, eKey, ssnComp);

e. Check to see if Employee was found. If so, get them employee and print.

if(pos >= 0) {
	Employee e = employees.get(pos);
	System.out.println("Employee found : " + e);		
}
else{
	System.out.println("*** Employee Not Found ***, pos=" + pos);		
}

4. Example –

a. Add these lines of code to the bottom of main in EmployeeTest.

// Binary Search example
Collections.sort(employees, ssnComp);
System.out.println("Current List");
printList(employees);
Employee eKey = new Employee("don't know", 243558673, -9999.0);

int pos = Collections.binarySearch(employees, eKey, ssnComp);

System.out.println("\nEmployee Key searched for: " + eKey);
if(pos >= 0) {
	Employee e = employees.get(pos);
	System.out.println("Employee found : " + e);		
}
else{
	System.out.println("*** Employee Not Found ***, pos=" + pos);		
}

eKey = new Employee("don't know", 666666666, -9999.0);

pos = Collections.binarySearch(employees, eKey, ssnComp);
if(pos < 0) {
	System.out.println("\nEmployee Key searched for: " + eKey);
	System.out.println("*** Employee Not Found ***, pos=" + pos);		
}

b. Study the code, run, and verify the output.

Stage 7 - binarySearch vs. indexOf Search, Speed Comparison

A common task in computing is to look for an item in a collection, to search for item. The item being searched for is frequently called the key. One way to search for an item in a list is is to use the indexOf method which we have previously studied. As you recall, you supply the key and it returns the location of the key if it is found, or -1 if it is not found. And, the list must implement Comparable. For example, a sample call looks like this:

int pos = emps.indexOf(key);

As shown in the previous Stage in this lab, binary search is another way to search for an item; however, the items in the list must be sorted. If you have a list that is sorted, then binary search is the fastest way to search for an item.

In this stage we run a simulation to compare the speed of indexOf and binarySearch.

1. We remember that to use indexOf on a list, the class of the items in the list must implement Comparable. Do the following:

a. Change the Employee class declaration to:

public class Employee implements Comparable<Employee> {

b. Add these two methods to the Employee class

@Override
public boolean equals(Object o) {
	Employee e = (Employee)o;
	return this.ssNum==e.ssNum;
}

@Override
public int compareTo(Employee e) {
	return this.ssNum-e.ssNum;
}

2. (Read, no action required) Here are some details of the experiment we will do:

a. Generate 1000 random Employee objects and put them in a list.
b. From those 1000 random employees, choose 100 (10%) of the SSN’s and put them in a list. These are the SSN’s of the employees we will search for. Thus, all 100 will be found in the list with 1000 employees.
c. Time how long it takes to find those 100 employees in the list of 1000 using binary search.
d. Time how long it takes to find those 100 employees in the list of 1000 using indexOf.
e. Repeat for lists of size 10,000; 100,000; 200,000 searching for 1,000; 10,000; 20,000; respectively.
f. The results from running on my computer are shown in the graph below. Notice, that binarySearch is more than 285 times faster than indexOf in my example (you will learn better ways to compare algorithms in CS 3410). This does take into account the time to sort the list when using binarySearch.

Note: There is no need to study or understand the code below. The purpose is to simply see the difference in performance of the two methods when you run the code at the end.

3. Create an interface named SearchInterface (in the comparator_examples package) and replace everything in the interface (except the package statement at the top) with the code below.

import java.util.Comparator;
import java.util.List;

public interface SearchInterface {

	public int search(List<Employee> emps, Employee key, Comparator<Employee> comp);
}

For the advanced learner: We are using an interface that will support the use of lambda expression in code for the experiment. This will greatly reduce the amount of code we need to write. It will probably be hard to understand this without studying lambda expressions, but you might get the idea: we are creating two “methods” that are not attached to an object, and then passing them around as if they were variables. I will highlight a few key lines in the code further below.

4. Create a class named SpeedComparison (in the comparator_examples package) and replace everything in the class (except the package statement at the top) with the code below.

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SpeedComparison {
	static final int[] INITIAL_LIST_SIZE = {1000, 10000, 100000, 200000};
	static final int[] NUM_SEARCHES = {100, 1000, 10000, 20000};
 static final EmployeeSSNComparator ssnComp = new EmployeeSSNComparator();

	public static void main(String[] args) {
// Lambda expressions
		SearchInterface indexOfSearch = (emps,key,comp) -> emps.indexOf(key);
		SearchInterface binarySearch = (emps,key,comp) -> Collections.binarySearch(emps,key,comp);
		
		int i=0;
		for(int listSize : INITIAL_LIST_SIZE) {
			// Create list of employees
			ArrayList<Employee> emps = createListOfRandomEmployees(listSize);
			// Create list of SSN's to search for (all will be found)
			ArrayList<Integer> ssnsToSearchFor = createListOfSSNToSearchFor(emps, NUM_SEARCHES[i++]);

			doExperiment(emps, ssnsToSearchFor, binarySearch, " Binary Search");
			doExperiment(emps, ssnsToSearchFor, indexOfSearch, "indexOf Search");
		}
	}

	public static void doExperiment(List<Employee> emps, List<Integer> keys,
			SearchInterface searchOperation, String title) {

		String msg = buildHeader(emps, keys, title);
	
		// Begin timing
	 long begTime = System.currentTimeMillis();
	 // Sort list if doing binary search
	 if(title.equals(" Binary Search")) {
			Collections.sort(emps, ssnComp);
	 }
	 // Search for keys
	 for(int key : keys) {
	 	Employee eKey = new Employee("?", key, 0.0);
	 	int pos = searchOperation.search(emps, eKey, ssnComp);
	 }
		// Stop timing
		long endTime = System.currentTimeMillis();
		
		msg = buildFooter(msg, begTime, endTime);
	 System.out.println(msg);
	}

	private static String buildFooter(String msg, long begTime, long endTime) {
		// Calculate total time in seconds.
	 double totTime = (endTime-begTime)/1000.0;
	 msg += String.format("%7.3f sec", totTime);
		return msg;
	}

	private static String buildHeader(List<Employee> emps, List<Integer> keys, String title) {
		String className = emps.getClass().getName();
		int locPeriod = className.lastIndexOf(".");
		className = className.substring(locPeriod+1);
	 String msg = String.format(title + " : %s size: %,7d, time to search for %,7d vals: ",
	 		className, emps.size(), keys.size());
		return msg;
	}

	public static ArrayList<Integer> createListOfSSNToSearchFor(ArrayList<Employee> emps, int numValues) {
		ArrayList<Integer> ssns = new ArrayList<>();
		int size = emps.size();
		for(int i=0; i<numValues; i++) {
			// Get location
			int loc = (int)(size*Math.random());
			// Get Employee
			Employee e = emps.get(loc);
			ssns.add(e.getSSNum());
		}
		return ssns;
	}

	public static ArrayList<Employee> createListOfRandomEmployees(int numValues) {
		ArrayList<Employee> emps = new ArrayList<>();
		for(int i=0; i<numValues; i++) {
			Employee e = createRandomEmployee();
			emps.add(e);
		}
		return emps;
	}

	private static Employee createRandomEmployee() {
		return new Employee(
				createRandomName(),
				createRandomSSN(),
				createRandomSalary());
	}
	
	private static String createRandomName() {
		String name = "";
		for(int i=0; i<3; i++) {
			int val = (int)(1+26*Math.random());
			char c = (char)val;
			name += c;
		}
		return name;
	}
	
	private static int createRandomSSN() {
		String strSSN = "";
		// No 0's in SSN for simplicity, since SSN is int
		for(int i=0; i<9; i++) {
			int val = (int)(1+9*Math.random());
			strSSN += val;
		}
		int ssn = Integer.parseInt(strSSN);
		return ssn;
	}

	private static double createRandomSalary() {
		double val = 8+50*Math.random();
		String strSal = String.format("%.2f", val);
		double salary = Double.parseDouble(strSal);
		return salary;
	}

}

5. Run the code. It will take 30 or so seconds. Study the output. The output I got is shown below (of course, yours will be different):

 Binary Search : ArrayList size: 1,000, time to search for 100 vals: 0.003 sec
indexOf Search : ArrayList size: 1,000, time to search for 100 vals: 0.001 sec
 Binary Search : ArrayList size: 10,000, time to search for 1,000 vals: 0.008 sec
indexOf Search : ArrayList size: 10,000, time to search for 1,000 vals: 0.033 sec
 Binary Search : ArrayList size: 100,000, time to search for 10,000 vals: 0.048 sec
indexOf Search : ArrayList size: 100,000, time to search for 10,000 vals: 3.183 sec
 Binary Search : ArrayList size: 200,000, time to search for 20,000 vals: 0.067 sec
indexOf Search : ArrayList size: 200,000, time to search for 20,000 vals: 18.870 sec

Submission

1. Do the following:

1. Zip all the folders (packages) under the src folder into a zip file named: lab11_lastname.zip
1. Upload your zip file to the lab11 dropbox in Blazeview.

You are done!
[bookmark: _GoBack]

Appendix

public class EmployeeSalaryComparator implements Comparator<Employee> {
	public int compare(Employee e1, Employee e2) {
		double diff = e1.getSalary() - e2.getSalary();
		if(diff < 0.0) return -1;
		else if(diff > 0.0) return 1;
		else return 0;
		
	}
}

Search Time

Binary Sear	ch	1000	10000	100000	200000	2E-3	8.0000000000000002E-3	7.8E-2	6.4000000000000001E-2	indexOf Search	1000	10000	100000	200000	2E-3	3.3000000000000002E-2	3.2149999999999999	18.254999999999999	Num Employees in List

time (sec)

4

image3.jpeg

image4.jpeg

image1.jpeg

image2.jpeg

