[bookmark: _Hlk34308361]CS 1302 – Lab 16

To complete this tutorial, you must have the e(fx)clipse plugin to create JavaFX projects.

This is a tutorial on writing event handlers for Graphical User Interfaces (Gui). There are 7 stages to complete this lab:

	Stage
	Title

	1
	Programming an Event Handler

	2
	Accessing a ComboBox in an Event Handler

	3
	Accessing a ListView in an Event Handler

	4
	Accessing a set of CheckBoxes in an Event Handler

	5
	Accessing a set of RadioButtons in an Event Handler

	6
	Maintaining State in a GUI Application

	7
	Example

To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Programming an Event Handler

1. [bookmark: _Hlk34393250][image:]Read (no action required) –

a. An event handler is code that is run when the user takes some action on a Gui, for example, when a button is pressed. The technique we use is to write inner class event handlers. Some other techniques, which are similar are: anonymous class, stand-alone class, and lambda expression event handlers.

b. Suppose we want to write a Gui that works as shown on the right. Assuming the Gui is written, there are two things to do:

i. Write a class that implements the EventHandler interface. The EventHandler interface requires a handle method:

[image:]

ii. Register the event handler with the button.

[image:]

Then, when the button is pressed, the handle method is called.

c. [bookmark: _Hlk56851697][image:]Our event handler is an inner class event handler. An inner class is a class inside another class. An inner class can use all members of the enclosing class (even private). Note the figure on the right.

d. The TextField and TextArea must be declared as instance variables so that they can be accessed in the event handler. Note that the event handler does not use the Label nor the Button, so they could have been declared as local variables in the buildGui method. It might be useful to declare all controls as instance variables to avoid confusion.

2. Do the following:

a. Download and unzip the zip file associated with this lab.
b. Open Eclipse in a workspace.
c. Create a JavaFX project with the name, lab16_lastName
d. Drag all files that were unzipped above into the application package in Eclipse. It will ask to overwrite application.css; answer, “yes”.
e. Open Main1 and run. The GUI above should be displayed, but the event handler has not been coded yet.

3. Add the inner class event handler below to the Main1 class. Remember that it goes inside the class, at the same level as a method or instance variable.

private class HelloWorldButtonEventHandler
 implements EventHandler<ActionEvent> {
	@Override
 public void handle(ActionEvent e) {
 	String name = txfName.getText();
 txaMessage.setText(name + ", Hello World!");
 }
}

4. Register the event handler with the button by adding this line of code directly below the creation of the button in buildGui.

btnHelloWorld.setOnAction(new HelloWorldButtonEventHandler());

The result will look like this:

private Pane buildGui() {
	...
	btnHelloWorld = new Button("Hello World");
	btnHelloWorld.setOnAction(new HelloWorldButtonEventHandler());
	grid.add(btnHelloWorld, 0, 1);
	...
}

5. Run, and verify that the event handler is working as expected.

Stage 2 - Accessing a ComboBox in an Event Handler

6. [image:] Read (no action required) –

a. Consider the GUI on the right. The user selects an interest rate from the ComboBox, enters a balance, presses the button then a message is displayed showing the new balance after the interest is applied.

b. Thus, the button’s event handler needs to access the selected value from the ComboBox as well as the value in the TextField. Thus, these two must be declared as instance variables.

c. The selected value of the ComboBox is obtained through its getValue method. For example, if the ComboBox’s name is cmbInterestRate, then we can retrieve this value with this line of code in the event handler:

String strIntRate = cmbInterestRate.getValue();

Note, however, in the example above, that strInterestRate=”3.0%”. Thus, we need to strip off the “%”:

strIntRate = strIntRate.substring(0,strIntRate.length()-1);

And, we need to convert it to a double (and divide by 100 to make it a decimal) before doing computations with it.

double intRate = (Double.parseDouble(strIntRate))/100.0;

7. Open ComboBoxExample and run. The GUI above should be displayed, but the event handler has not been coded yet.

8. Add the inner class event handler below to the ComboBoxExample class. Study the code to understand what it is doing.

private class CalculateInterestEventHandler implements EventHandler<ActionEvent> {
	@Override
	public void handle(ActionEvent event) {
		
		String strIntRate = cmbInterestRate.getValue();
 		// Remove "%" from the end
		strIntRate = strIntRate.substring(0,strIntRate.length()-1);
		
		double intRate = (Double.parseDouble(strIntRate))/100.0;
		double balance = Double.parseDouble(txfBalance.getText());
		double interest = balance*intRate;
		double newBalance = balance + interest;
 		String message = String.format("Old balance=$%,.2f\n" +
		 "Interest=$%,.2f\nNewBalance=$%,.2f", balance, interest, newBalance);
 txaMessage.setText(message);
	}
}

9. Register the event handler with the button by adding this line of code directly below the creation of the button in buildGui.

btnCalcInterest.setOnAction(new CalculateInterestEventHandler());

The result will look like this:

private Pane buildGui() {
	...
	Button btnCalcInterest = new Button("Calculate Interest");
 	btnCalcInterest.setOnAction(new CalculateInterestEventHandler());
	grid.add(btnCalcInterest, 1, 3);

	...
}

10. Run, and verify that the event handler is working as expected.

Stage 3 - Accessing a ListView in an Event Handler

11. [image:] Read (no action required) –

a. Consider the GUI on the right. The user selects any number of items from the ListView, presses the button then a message is displayed showing the items that were selected.

b. The selected items in the ListView are obtained with this line of code:

List<String> allItems = lvwInterests.getSelectionModel().getSelectedItems();

Then, we can loop over the list to access each item:

String interests = "";
for(String interest : allItems) {
	interests += interest + ", ";
}

12. Open ListViewExample and run. The GUI above should be displayed, but the event handler has not been coded yet.

13. Add the inner class event handler below to the ListViewExample class. Study the code to understand what it is doing.

private class ProcessEventHandler implements EventHandler<ActionEvent> {
	@Override
	public void handle(ActionEvent event) {
		
		String interests = "";
		List<String> allItems = lvwInterests.getSelectionModel().getSelectedItems();
		for(String interest : allItems) {
			interests += interest + ", ";
		}
		
	 txaMessage.setText(interests);
	}
}

14. Register the event handler with the button by adding this line of code directly below the creation of the button in buildGui.

btnProcess.setOnAction(new ProcessEventHandler());

15. Run, and verify that the event handler is working as expected.

Stage 4 - Accessing a set of CheckBoxes in an Event Handler

16. [image:] Read (no action required) –

a. Consider the GUI on the right. The user selects any number of check boxes, presses the button then a message is displayed showing the items that were selected.

b. Note that we have individually named each CheckBox in a helper method to build the HBox that holds them.

private Pane buildFoodSelection() {
	ckbBurger = new CheckBox("Burger");
	ckbDrink = new CheckBox("Drink");
	ckbFries = new CheckBox("Fries");

	HBox hbxFood = new HBox();
	hbxFood.getStyleClass().add("h_or_v_box");			
	hbxFood.getChildren().addAll(ckbBurger,ckbDrink,ckbFries);

	return hbxFood;
}

c. In the handle event handler, we simply check the isSelected property of each CheckBox:

if(ckbBurger.isSelected()) {
	cost += 5.99;
	order += "Burger";
}
if(ckbDrink.isSelected()) {
	cost += 1.99;
	order += ", Drink";
}

if(ckbFries.isSelected()) {
	cost += 1.49;
	order += ", Fries";
}

17. Open CheckBoxExample and run. The GUI above should be displayed, but the event handler has not been coded yet.

18. Add the inner class event handler below to the ListViewExample class. Study the code to understand what it is doing.

private class ProcessEventHandler implements EventHandler<ActionEvent> {
	@Override
	public void handle(ActionEvent event) {
		double cost = 0.0;
		String order = "Order:\n";
		
		if(ckbBurger.isSelected()) {
			cost += 5.99;
			order += "Burger";
		}
		if(ckbDrink.isSelected()) {
			cost += 1.99;
			order += ", Drink";
		}
		
		if(ckbFries.isSelected()) {
			cost += 1.49;
			order += ", Fries";
		}
		
		String totCost = String.format("\nTotal: $%,.2f\n", cost);
		order += totCost;
 	txaMessage.setText(order);
	}
}

19. Register the event handler with the button by adding this line of code directly below the creation of the button in buildGui.

btnProcess.setOnAction(new ProcessEventHandler());

20. Run, and verify that the event handler is working as expected.

Stage 5 - Accessing a set of RadioButtons in an Event Handler

21. [image:] Read (no action required) –

a. Consider the GUI on the right. The user selects a RadioButton, presses the button then a message is displayed showing the items that were selected.

b. Remember that we need to associate each RadioButton with a ToggleGroup to force them to work as a group (only one RadioButton can be selected). This is shown below in the helper method to build the VBox that holds them (and the Button). As we will see, the event handler only needs access to the ToggleGroup to determine which one is selected.

private Pane buildDiningChoice() {
	tGrpDiningChoice = new ToggleGroup();
	rbDineIn = new RadioButton("Dine In");
	rbDineIn.setSelected(true);
	rbDineIn.setToggleGroup(tGrpDiningChoice);
	rbTakeOut = new RadioButton("Take Out");
	rbTakeOut.setToggleGroup(tGrpDiningChoice);
	rbDelivery = new RadioButton("Delivery");
	rbDelivery.setToggleGroup(tGrpDiningChoice);

	Button btnProcess = new Button("Process");
	btnProcess.setOnAction(new ProcessEventHandler());

	VBox vbxDiningChoice = new VBox();
	vbxDiningChoice.getStyleClass().add("h_or_v_box");			
	vbxDiningChoice.getChildren().addAll(rbDineIn,rbTakeOut,rbDelivery,btnProcess);

	return vbxDiningChoice;
}

c. In the handle event handler, we use the getSelectedToggle method of the ToggleGroup to return the RadioButton that was selected.

RadioButton rad = (RadioButton)tGrpDiningChoice.getSelectedToggle();

Next, we get the text of the radio button:

String choice = rad.getText();

Then, we use that text to determine which radio button was selected:

String message = "";
switch(choice) {
	case "Dine In" : message = "Glad you are dining in with us";
		break;
	case "Take Out" : message = "Meet you at the window";
		break;
	case "Delivery" : message = "We will have it there shortly";
}
txaMessage.setText(message);

22. [bookmark: _Hlk119147590]Open RadioButtonExample and run. The GUI above should be displayed, but the event handler has not been coded yet.

23. Add the inner class event handler below to the RadioButtonExample class. Study the code to understand what it is doing.

private class ProcessEventHandler implements EventHandler<ActionEvent> {
	@Override
	public void handle(ActionEvent event) {
		
		RadioButton rad = (RadioButton)tGrpDiningChoice.getSelectedToggle();
		String choice = rad.getText();
		String message = "";
		switch(choice) {
			case "Dine In" : message = "Glad you are dining in with us";
				break;
			case "Take Out" : message = "Meet you at the window";
				break;
			case "Delivery" : message = "We will have it there shortly";
		}
		txaMessage.setText(message);
	}
}

24. Register the event handler with the button by adding this line of code directly below the creation of the button in buildDiningChoice helper method.

btnProcess.setOnAction(new ProcessEventHandler());

25. Run, and verify that the event handler is working as expected.

Stage 6 - Maintaining State in a GUI Application

26. [image:]Open ShapeGenerator and run. The GUI will appear as on the right. Do the following:

a. There should be data in the text field (e.g. 2.4 3.5 4.6). Press “Create Shape” and a Triangle will be created.
b. Select the “Rectangle” radio button and type in the width and height of a rectangle, separated by a space (e.g 5.5 2.3) and the press “Create Shape”
c. Create a circle by supplying the radius.
d. Press the “Show All” button. Note that it says that it needs to be implemented.

27. Read (no action required) –

a. The code uses an abstract GeometricObject class with abstract methods, getArea and getPerimeter. It also uses three subclasses: Triangle, Rectangle, and Circle.

b. Display the CreateShapeEventHandler and quickly examine the code. We’ll describe it next.

c. The event handler uses the radio button to determine which shape to create using the parameters the user has typed in. To get the parameters, it is using the split method of the String class which we will study in a later chapter. However, I’ll quickly explain. This statement, of course, simply puts the input into a string:

String input = txfParameters.getText();

Then, the split breaks the string in “numbers” by removing any “,” or any spaces “\\s” and stores them in an array.

String[] parameters = input.split("[,\\s]+");

For example:

String input = “2.4 3.4 5.1”;

String[] parameters = input.split("[,\\s]+");

Would mean that: parameters[0]=”2.4”, parameters[1]=”3.4”, parameters[2]=”5.1”

d. Note that the shape variable is a local variable and so it dies when the event handler ends. What we would like to do is remember the shapes as they are added. We call this, maintaining state. This is simply done by:

i. Adding an instance variable to the class to hold GeometricObjects

protected ArrayList<GeometricObject> shapes = new ArrayList<>();

ii. In the event handler, after the case statement, add this line to put the newly created shape in the list:

shapes.add(shape);

iii. Once we have done this, then we can program the ShowAllEventHandler to loop over the list and display all the shapes.

28. Do the following:

a. Add this instance variable to the class:

protected ArrayList<GeometricObject> shapes = new ArrayList<>();

b. Add this line immediately after the case statement in the CreateShapeEventHandler:

// Add to collection
shapes.add(shape);

c. Replace the line of code in the handle method of the ShowAllEventHandler with:

String msg = "All Shapes:\n";

int i=1;
for(GeometricObject shape : shapes) {
	msg += String.format("%4d. %s\n", i++, shape);
}
txaMessage.setText(msg);
// Erase fields
txfParameters.setText(null);

d. Run, add some shapes, and then use the “Show All” button and verify that it is working.

29. [image:]You will add a feature to the program by writing your own code. Do the following:

a. Add a “Reset” button to the right of the “Show All” button. Steps:

i. Create an instance variable for the new button
ii. Find the buildButtonRow method.
iii. Create a new button and add it to the hBox.

b. Add an event handler that deletes all the shapes in the list and displays a message confirming this. Steps:

i. Copy the ShowAllEventHandler and paste.
ii. Change the name of this new method to ResetEventHandler.
iii. Delete everything in the handle method except the next-to-last line: txaMessage.setText(msg);
iv. Write a message to display.
v. Above this, write code to clear all the shapes from the shapes list. You can do this in one line of code.

c. Register the event handler with the button. Steps:

i. Copy these two lines and paste. Then change to reflect the Reset button name and event handler

CreateShapeEventHandler btnEventHandler = new CreateShapeEventHandler();
btnCreateShape.setOnAction(btnEventHandler);

ii. Run, add some shapes, show all, then reset, then show all to verify that it is working.

[bookmark: _GoBack]Submission

1. Do the following

a. Zip all the folders (packages) under the src folder into a zip file named: lab16_lastname.zip
b. Upload your zip file to the lab16 dropbox in Blazeview.

You are done!
3

image3.jpeg

image4.jpeg

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.jpeg

image2.jpeg

