CS 1302 – Lab 10

When a program runs, it may accumulate data, for example in an array list. However, that data is gone when the program ends. Clearly, to write real systems, we must have data that persists between running a program again. One way to persist data is in text files, which contain simple text with no formatting. This lab describes how to read data from a text file into your program, and, how to write data you have in your program into text files.

This lab introduces reading and writing text files. There are 9 stages to complete this lab:

	Stage
	Title

	1
	Where is my File?

	2
	More on Reading a Text File

	3
	Reading & Creating Objects

	4
	String.split()

	5
	Parsing Data

	6
	More Parsing

	7
	Writing Data to a Text File

	8
	The File Class

	9
	Reading & Writing Example

[bookmark: OLE_LINK1]
To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Where is my File?

Specifying the location of a text file that is to be read or written to, using Eclipse and packages can be a bit confusing. By default, Java is looking for the text file in the project folder. We will want the text file to be in the package folder. To do this, we simply set the path to this location. Below, we illustrate this.

1. (Read, no action required)

a. You remember that to read from the keyboard, you use the Scanner class with code like this:

Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();

b. [image:]We can also use the Scanner class to read from a text file. Suppose we want to read a text file named: numbers1.txt. We first create a File object with the fileName and then create a Scanner object with the File object. For example:

String fileName = "numbers1.txt";
File inFile = new File(fileName);
Scanner input = new Scanner(inFile);

If the code above is in ReadExample1.java located in the read_examples package as shown on the right, then it will be expecting the text file to be located in the project folder, lab10_gibson.
c. [image:]For this class, we will want the text file in the same package as the code, as shown on the right. This makes grading a bit easier and eliminates confusion if there are multiple packages and text files. In order to read from the package folder, we must provide a path there: src/package_name/. For example, to read numbers1.txt from the read_examples package:

 String fileName = "src/read_examples/numbers1.txt";

d. [image:]Consider a text file that contains a list of numbers separated by a space (the initial, gray, “1” is the line number and is not part of the text file). Next, we describe the code to read and print the values:

i. Create File object:

String fileName = "src/read_examples/numbers1.txt";
File inFile = new File(fileName);

ii. See if the file exists:

boolean doesExist = inFile.exists();
if(doesExist) {
	try {

iii. If file exists, create Scanner object. Note that Java requires us to use try/catch (above) when using a Scanner object. Many I/O (input/output) methods can throw exceptions, which are called checked exceptions which must be caught.

		Scanner input = new Scanner(inFile);

iv. Loop until everything has been read. By default, the Scanner assumes the file has “tokens” (a character, or string of characters) separated by a space(s). The Scanner’s hasNext method returns true if there is something else in the file, i.e. if there is another token to read.
[image:]
		while(input.hasNext()) {

v. The Scanner’s next method returns the next token (as a String). Some of the Scanner methods we will use are shown on the right. Here, we could have use, nextInt instead, since the numbers are integers.

			String token = input.next();
			System.out.print(token + " ");
		}

vi. Close the Scanner when through reading.

		input.close();
	}
	catch(IOException e) {
		System.out.println("Error reading file");
	}
}
else {
	System.out.println("Can't find file");
}

2. Setup – Create a project named, lab10_lastName and create a package named: read_examples.

3. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c2.jpg]Create Text File – Do the following:

a. Select the project folder, lob10_lastName.

b. Choose: File, New, Untitled Text File (or File, New, Other, General, Untitled Text File)

c. Type in some integers on a single line:

[image:]
[image:]
d. Choose: File, Save As

e. Select the project folder: lab10_lastName

f. Type in the file name: numbers1.txt

g. Press OK. The result is shown in the figure on the right.

4. Create Class to Read Data – Create a class named ReadExample1 (in the read_examples package) and replace everything in the class with:

package read_examples;

import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadExample1 {

	public static void main(String[] args) {
		String fileName = "numbers1.txt";
		System.out.println("Trying to read: " + "\"" + fileName + "\"");
		File inFile = new File(fileName);
		boolean doesExist = inFile.exists();
		System.out.println("Does " + "\"" + fileName + "\"" + " exist? " + doesExist);
		if(doesExist) {
			System.out.println("Contents of file:");
			try {
				Scanner input = new Scanner(inFile);
				while(input.hasNext()) {
					String token = input.next();
					System.out.print(token + " ");
				}
				input.close();
			}
			catch(IOException e) {
				System.out.println("Error reading file");
			}
		}
		else {
			System.out.println("Can't find file");
		}
	}
}

5. Run the program and verify the output by reading the code:

Trying to read: "numbers1.txt"
Does "numbers1.txt" exist? true
Contents of file:
14 83 9 8 3 9 2 14

6. [image:]Drag (don’t copy) numbers1.txt into the read_examples package as shown on the right.

7. Run the program and verify that the file is not found:

Trying to read: "numbers1.txt"
Does "numbers1.txt" exist? false
Can't find file

8. Change the file name to include the path:

String fileName = "src/read_examples/numbers1.txt";

9. Run the program and verify that the file is read correctly.

Stage 2 - More on Reading a Text File

1. Close ReadExamples1.java and copy and paste into the same package with the name: ReadExample2. You can run it to make sure it still works.

2. Change this line:

String token = input.next();

To:

String token = input.nextLine();

This will read the entire line. Thus, the loop will occur only once.

3. Run and verify the output.

4. Close ReadExamples2.java and copy and paste into the same package with the name: ReadExample3. You can run it to make sure it still works.

5. Replace the body of the while loop with:

int val = input.nextInt();
System.out.print(val + " ");

Notice now that we are reading the “tokens” as integers using the Scanner’s nextInt method. This is fine as long as we know they are integers. The Scanner class also has nextDouble and nextBoolean methods.

6. Run and verify the output.

7. Open numbers1.txt and add a character somewhere in the file. For example:

14 83a 9 8 3 9 2 14
8. Run and verify that the program crashes by throwing an un-caught InputMismatchException.

Trying to read: "src/read_examples/numbers1.txt"
Does "src/read_examples/numbers1.txt" exist? true
Contents of file:
14 Exception in thread "main" java.util.InputMismatchException
	at java.util.Scanner.throwFor(Unknown Source)
	at java.util.Scanner.next(Unknown Source)
	at java.util.Scanner.nextInt(Unknown Source)
	at java.util.Scanner.nextInt(Unknown Source)
	at read_examples.ReadExample3.main(ReadExample3.java:20)

9. We could handle this situation by using try/catch around the call to input.nextInt(). Replace the code inside the while loop with:

try {
	int val = input.nextInt();
	System.out.print(val + " ");
}
catch(InputMismatchException ie) {
	// Read the token as a string. Note, since, nextInt, which
	// cause the exception, didn't actually read a value, the marker (cursor)
	// for where to begin reading has not been advanced. Thus, the call to next
	// will read the value.
	String badValue = input.next();
	System.out.print("Skipped:" + badValue + " ");
}

10. Run, and verify the output:

Trying to read: "src/read_examples/numbers1.txt"
Does "src/read_examples/numbers1.txt" exist? true
Contents of file:
14 Skipped:83a 9 8 3 9 2 14

11. Remove the character from numbers1.txt and save.

Stage 3 - Reading and Creating Objects

1. Create Text File – Do the following:

a. Create a new package: read_examples2.

b. Create a text file named: employees1.txt and copy this data in:

Dave
44.55
33
Sue
33.44
45
Sherry
55.34
18
Mike
23.45
23
Nicole
76.34
19

Note: You will probably end up with a blank line in the file (line 16). I don’t think it will affect the reading, but probably better to use backspace to delete that line.

2. Read (no action required) –
[image:]
a. The Employee class is shown on the right. Each three lines in the text file above, represents an Employee object: name, salary, age.

b. We will write code to read the values in, create Employee objects, put them in an array list, and finally print them as the algorithm below shows:

1. Create an arraylist to hold employees
2. Loop over the file
a. Read the name, salary, and age
b. Use them to build an Employee object
c. Add employee to the arraylist.
3. Loop over the arraylist and print each employee.

3. Create Classes to Read and Store Data – Do the following:

a. Create a class named Employee (in the read_examples2 package) and replace everything in the class (except the package statement at the top) with:

public class Employee {
	private String name;
	private double salary;
	private int age;

	public Employee(String name, double salary, int age) {
		this.name = name;
		this.salary = salary;
		this.age = age;
	}

	public String getName() { return name; }
	public double getSalary() { return salary; };
	public int getAge() { return age; }

	@Override
	public String toString() {
		return "Employee [name=" + name + ", salary=" + salary + ", age="
				+ age + "]";
	}
}

b. Create a class named EmployeeReader and replace everything in the class (except the package statement at the top) with:

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;

public class EmployeeReader {
	public static void main(String[] args) {
		ArrayList<Employee> employees = new ArrayList<>();

		File inFile = new File("src/read_examples2/employees1.txt");
		
		try {
			Scanner input = new Scanner(inFile);
			while(input.hasNext()) {
				String name = input.next();
				double salary = input.nextDouble();
				int age = input.nextInt();
				Employee e = new Employee(name, salary, age);
				employees.add(e);
			}
			input.close();
		}
		catch(IOException e) {
			System.out.println(e);
		}

		for(Employee e : employees)
			System.out.println(e);
	}
}

Study the code in the try block.

c. Run and verify the output as shown below. It would be useful to run through the debugger and inspect the values as they are read.

Employee [name=Dave, salary=44.55, age=33]
Employee [name=Sue, salary=33.44, age=45]
Employee [name=Sherry, salary=55.34, age=18]
Employee [name=Mike, salary=23.45, age=23]
Employee [name=Nicole, salary=76.34, age=19]

4. Read (no action required) – Consider the three text files shown below. The code we wrote above to read employees1.txt will read any one of these properly. We will show this next.
[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c4.jpg][image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c1.jpg]

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c5.jpg]

5. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c4.jpg]Test other Layouts of the Data – Do the following:

a. Copy employees1.txt and give it the new name: employees2.txt.

b. Open employees2.txt and reformat so that it looks as shown in the figure on the right: each employee on a separate line.

c. Open EmployeeReader and change the reference to employees1.txt to employees2.txt.

File inFile = new File("src/read_examples2/employees2.txt");

d. Run and verify that the output is the same as before.

e. Copy employees2.txt and give it the new name: employees3.txt.

f. Open employees3.txt and reformat so that it looks as shown in the figure below: all the employees on a single line.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c5.jpg]

g. Open EmployeeReader and change the reference to employees2.txt to employees3.txt.

h. Run and verify that the output is the same as before.

6. Read (no action required) –What is the point of this? The Scanner class is very easy to use and specifically, it is not concerned with the end of a line (unless nextLine is called). When you call any of the next methods (except nextLine), you are simply returned the next token no matter whether it is on the same line or the next line (or even separated by multiple blank lines). In more advanced situation, we have to use other classes for reading such as: Reader, BufferedReader, FileReader. A short discussion of the different classes is found here.

Stage 4 - String.split()

[bookmark: _Hlk35518806]Sometimes it is useful and/or necessary to read a text file line-by-line. As we read a line, we then use code to break it into tokens ourselves, figure out what it is, and then do the appropriate action with it. To learn how to parse data, we must learn how to break a string into tokens using the String class’s split method.

1. (Read, no action required) –

a. The String class has a split method that breaks a string into “tokens” based on a delimiter and returns the tokens in an array. For example:

String s1 = "43.85 66.239 8.223";
String[] vals = s1.split(" ");

Results in the vals array containing: "43.85", "66.239", "8.223"

The delimiter in this case is a space (" "). Thus, everything between the spaces is a token.
b. Above, we say that we “split the string on a space.” Though this will work for our examples, technically there are lots of different types of spaces[footnoteRef:1]. This delimiter, “\s” will catch more of them. Remember, since a backslash is a delimiter in a Java string, it must be delimited with a “\”. Thus, we would write it like this: [1: https://en.wikipedia.org/wiki/Whitespace_character]

String[] vals = s1.split("\\s");

c. The two examples above will split the string on a single space.

String[] vals = s1.split(" ");
String[] vals = s1.split("\\s");

If we want to split on any number of spaces, we do this:

String s1 = "43.85 66.239 8.223";
String[] vals = s1.split("\\s+");

Which results in the vals array containing: "43.85", "66.239", "8.223"

d. To split a string any of multiple characters, we surround the characters with “[]”. For example:

String s1 = "4,3 5,,,2, 8";
String[] vals = s1.split("[,\\s]+");

Results in the vals array containing: "4", "3", "5", "2", "8"

e. To split on common punctuation characters:

String s1 = "This. Is,,, \nfunny; \t\tyes: why? now!";
String[] vals = s1.split("[.,;:?!\\s]+");

Results in the vals array containing: "This", "is", "funny", "yes", "why", "now"

f. The delimiter (the argument to the split method) is actually a regular expression, which can be composed to delimit and pattern match sophisticated situations[footnoteRef:2]. [2: https://www.vogella.com/tutorials/JavaRegularExpressions/article.html#common-matching-symbols]

Next, we will show some examples:

2. Create Example – Do the following:

a. Create a new package: string_split.

b. Create a class named: StringSplitExamples and replace everything in the class (except the package statement at the top) with:

public class StringSplitExamples {
	public static void main(String[] args) {
		split_example1();
		split_example2();
		split_example3();
		split_example4();
		split_example5();
	}
	
	// Splits on a single space
	public static void split_example1() {
		System.out.println("split_example1()");
		String s1 = "43.85 66.239 8.223";
		String[] vals = s1.split("\\s");
		printArray(s1, "\\\\s", vals);
	}

	// There are two spaces between the first and second numbers.
	// Thus, one of the tokens is an empty string, "".
	public static void split_example2() {
		System.out.println("\nsplit_example2()");
		String s1 = "43.85 66.239 8.223";
		String[] vals = s1.split("\\s");
		printArray(s1, "\\\\s", vals);
	}

	// Splits on one or more spaces
	public static void split_example3() {
		System.out.println("\nsplit_example3()");
		String s1 = "43.85 66.239 8.223";
		String[] vals = s1.split("[\\s]+");
		printArray(s1, "[\\\\s]+", vals);
	}
	
	// Splits on or more commas or spaces
	public static void split_example4() {
		System.out.println("\nsplit_example4()");
		String s1 = "4,3 5, ,,2, 8";
		String[] vals = s1.split("[,\\s]+");
		printArray(s1, "[,\\\\s]+", vals);
	}

	// Splits on common punctuation
	public static void split_example5() {
		System.out.println("\nsplit_example5()");
		String s1 = "This. Is,,, \nfunny; \t\tyes: why? now!";
		String[] vals = s1.split("[.,;:?!\\s]+");
		printArray(s1, "[.,;:?!\\\\s]+", vals);
	}

	public static void printArray(String str, String delimeter, String[] vals) {
		String msg = "\"" + str + "\".split(\"" + delimeter + "\")=\n";
		int i=1;
		for(String s : vals) {
			msg += (i++) + ". \"" + s + "\"\n";
		}
		System.out.println(msg);
	}
}

3. Run, examine each method and the corresponding output.

Stage 5 - Parsing Data

In this stage we show an example of parsing data.

1. (Read, no action required) –

a. Suppose we have a file that contains integers and words in any arbitrary order as shown in the figure below:

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c6.jpg]

We would like to read the entire file and put all the integers in one ArrayList and all the words in another.

b. One way to do this is to read each token:

String token = input.next();

And then use a method we can write to see if the token is an int.

public static boolean isAnInteger(String strNum) {
 if (strNum==null) {
 return false;
 }
 try {
 	int val = Integer.parseInt(strNum);
	 return true;
 }
 catch (NumberFormatException nfe) {
 	return false;
 }
}

Note that this method would classify a double as a string. If we wanted to allow doubles, we could simply change to Double.parseDouble.

c. Thus, the body of the read loop will look like this (where ints and words are the ArrayLists used to store the data):

while(input.hasNext()) {
	String token = input.next();
	if(isAnInteger(token)) {
		int x = Integer.parseInt(token);
		ints.add(x);
	}
	else {
		words.add(token);
	}
}

2. Create Classes to Read and Store Data – Do the following:

a. Create a new package: read_examples3.
b. Create a text file (see directions above if necessary) named: numbersAndWords.txt.

c. Copy this data into the file:

33 992 guitar 8 fire 29 344 5 hat pick rain 1 horse 18

d. Create a class named ReadNumbersAndWords (in the read_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class ReadNumbersAndWords {
	public static void main(String[] args) {
		ArrayList<Integer> ints = new ArrayList<>();
		ArrayList<String> words = new ArrayList<>();
		File inFile = new File("src/read_examples3/numbersAndWords.txt");

		try {
			Scanner input = new Scanner(inFile);
			while(input.hasNext()) {
				String token = input.next();
				if(isAnInteger(token)) {
					int x = Integer.parseInt(token);
					ints.add(x);
				}
				else {
					words.add(token);
				}
			}
			input.close();
		}
		catch(IOException e) {
			System.out.println(e);
		}

		System.out.println(" ints: " + ints);
		System.out.println("words: " + words);

	}
	
	public static boolean isAnInteger(String strNum) {
	 if (strNum==null) {
	 return false;
	 }
	 try {
	 	int val = Integer.parseInt(strNum);
		 return true;
	 }
	 catch (NumberFormatException nfe) {
	 	return false;
	 }
	}
}

This approach is not the best, throwing an exception is expensive. However, it illustrates the idea of parsing. And, next we introduce a more efficient way.

e. Run and verify the output:

ints: [33, 992, 8, 29, 344, 5, 1, 18]
words: [guitar, fire, hat, pick, rain, horse]

3. (Read, no action required) – Another way to test each token to see if it is an integer is to use the matches method of the String class which accepts a regular expression. The regular expression below checks to see if all the characters in the token are digits.

if(token.matches("\\d+")) {

Note: this will only detect positive integers; negative integers will be treated as strings. To match negative integers, you would use: ("-?\\d+"). The “?” means optional, thus, the “-“ is optional. There is a lot to understanding regular expressions. We will only consider the one above.

I will not be testing you on the matches method, but we will consider it in the next example.

4. Open ReadNumbersAndWords and comment out the if statement and replace with:

if(token.matches("\\d+")) {

The while loop will look like this:

while(input.hasNext()) {
	String token = input.next();
	// if(isAnInteger(token)) {
	if(token.matches("\\d+")) {
		int x = Integer.parseInt(token);
		ints.add(x);
	}
	else {
		words.add(token);
	}
}

5. Run and verify that the output is the same as before.

Stage 6 - More Parsing

In this stage we show another example of parsing data.

6. [bookmark: _Hlk35517299][image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c7.jpg](Read, no action required) –

a. Suppose we have a file as shown on the right. A person (Dave) is shown on line 1 and the number of dogs he has (2). The next two lines show the two dogs.

b. Thus, to read in this data, where each person can have a different number of dogs, we could read a person’s name

String name = input.next();

and then read their number of dogs

int numDogs = input.nextInt();

and then loop over the number of dogs reading each dog’s name:

for(int i=0; i<numDogs; i++){
	String dogName = input.next();
	...
}

c. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\06_ch12_Exceptions\c8.jpg]Now, suppose we have Person and Dog classes as shown in the class diagram on the right. Then, we can build an ArrayList<Person> with code like this:

ArrayList<Person> people = new ArrayList<>();
...

while(input.hasNext()) {
	String name = input.next();
	Person p = new Person(name);
	int numDogs = input.nextInt();
	for(int i=0; i<numDogs; i++){
		String dogName = input.next();
		Dog dog = new Dog(dogName);
		p.addDog(dog);
	}
	people.add(p);
}

7. Create Classes to Read and Store Data – Do the following:

a. Create a text file (see directions above if necessary) named: peopleAndDogs.txt in the read_examples3 package.

b. Copy this data into the file:

Dave 2
Fido
Leo
Raquel 1
Juno
Alex 3
Snoopy
Barley
Moses
c. Create a class named Dog (in the read_examples3 package) and replace everything in the class (except the package statement at the top) with:

public class Dog {
	private String name;

	public Dog(String name) {
		this.name = name;
	}

	public String getName() {
		return name;
	}
}

d. Create a class named Person (in the read_examples3 package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;

public class Person {
	ArrayList<Dog> dogs = new ArrayList<>();
	private String name;

	public Person(String name){
		this.name = name;
	}

	public void addDog(Dog dog) {
		dogs.add(dog);
	}

	@Override
	public String toString(){
		StringBuilder msg = new StringBuilder();
		msg.append("Person: " + name + " - Dogs: ");
		for(Dog dog : dogs)
			msg.append(dog.getName() + ", ");
		msg.delete(msg.length()-2,msg.length());
		return msg.toString();
	}
}

e. Create a class named ReadPeopleAndDogs (in the read_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class ReadPeopleAndDogs {
	public static void main(String[] args) {
		ArrayList<Person> people = new ArrayList<>();
		File inFile = new File("src/read_examples3/peopleAndDogs.txt");

		try {
			Scanner input = new Scanner(inFile);
			while(input.hasNext()) {
				String name = input.next();
				Person p = new Person(name);
				int numDogs = input.nextInt();
				for(int i=0; i<numDogs; i++){
					String dogName = input.next();
					Dog dog = new Dog(dogName);
					p.addDog(dog);
				}
				people.add(p);
			}
			input.close();
		}
		catch(IOException e) {
			System.out.println(e);
		}

		for(Person p : people) {
			System.out.println(p);
		}
	}
}

f. Run and verify the output:

Person: Dave - Dogs: Fido, Leo
Person: Raquel - Dogs: Juno
Person: Alex - Dogs: Snoopy, Barley, Moses

8. [bookmark: _Hlk35518299][image: G:\eDataClasses\CS 1302 - Programming 2\notes\06_ch12_Exceptions\d.jpg](Read, no action required) Next, let’s consider the same problem except that the text file doesn’t contain the number of dogs, and each person (and their dogs are on the same line) as shown on the right. Here is the approach, inside the loop:

a. Read the entire line:

String line = input.nextLine();

b. Split the line on a space:

String[] tokens = line.split("\\s");

c. The first token has the name:

String name = tokens[0];
Person p = new Person(name);

d. The rest of the tokens are dog names. Notice that the loop below starts at 1.

for(int i=1; i<tokens.length; i++){
	String dogName = tokens[i];
	Dog dog = new Dog(dogName);
	p.addDog(dog);
}
people.add(p);

9. Code the example. Do the following:

a. Create a text file named: peopleAndDogs2.txt in the read_examples3 package.

Dave Fido Leo
Raquel Juno
Alex Snoopy Barley Moses

b. Create a class named ReadPeopleAndDogs2 (in the read_examples package) and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class ReadPeopleAndDogs2 {
	public static void main(String[] args) {
		ArrayList<Person> people = new ArrayList<>();
		File inFile = new File("src/read_examples3/peopleAndDogs2.txt");

		try {
			Scanner input = new Scanner(inFile);
			while(input.hasNext()) {
				
				String line = input.nextLine();
				String[] tokens = line.split("\\s");
				String name = tokens[0];
				Person p = new Person(name);
				for(int i=1; i<tokens.length; i++){
					String dogName = tokens[i];
					Dog dog = new Dog(dogName);
					p.addDog(dog);
				}
				people.add(p);
			}
			input.close();
		}
		catch(IOException e) {
			System.out.println(e);
		}

		for(Person p : people) {
			System.out.println(p);
		}
	}
}

10. Run and verify the output is correct.

Stage 7 - Writing Data to a Text File

In this stage we demonstrate how to write data to a text file using the PrintWriter class.

1. (Read, no action required) –

a. One way to write data to a text file is to use the PrintWriter class. It accepts a File as an argument:

File outFile = new File("src/write_examples/numbers.txt");
PrintWriter writer = new PrintWriter(outFile);
[image:]
b. Probably the three most useful (at least for our class) methods of the PrintWriter class are print(…), println(…), and printf(…) which work identically to the System.out.print(…) methods. For example, to loop over an array of integers (nums) and write them space-delimited to a text file:

for(int i=0; i<nums.length; i++) {
	writer.print(nums[i] + " ");
}

c. When we are done writing, we must close the writer: writer.close(); And, as with the Scanner class, we must try/catch (or throws…) all file manipulations.

2. Create Classes to Read and Store Data – Do the following:

a. Create a package named write_examples.

b. Create a class named WriteArray (in the write_examples package) and replace everything in the class (except the package statement at the top) with:

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteArray {

	public static void main(String[] args) {
		int[] nums = {33, 44, 55, 66, 12, 33, 55, 66, 77, 22};

		File outFile = new File("src/write_examples/numbers.txt");

		try {
			PrintWriter writer = new PrintWriter(outFile);
			for(int i=0; i<nums.length; i++) {
				writer.print(nums[i] + " ");
			}
			writer.close();
			System.out.println("File written");
		}
		catch (IOException ioe) {
			System.out.println("Problem creating file or writing");
		}
	}
}

c. Run and verify the output in the console:

File written

d. Select the write_examples package in the Package Explorer and choose: File, Refresh (or F5) and you should see the output file, numbers.txt appear. Open it and verify the contents.

e. Find the array declaration in WriteArray and add a number to the beginning of the array.

f. Run the program and examine the contents of numbers.txt. Note that the previous file was overwritten completely. In many situations you would want to check before overwriting a file. This is easily handled with the File class as we will see later.

Stage 8 - The File Class

[image:]In this stage we demonstrate a few methods of the File class.

1. The File class has many useful methods. The following example will illustrate some of them. Do the following:

a. Create a class named FileClassTest (in the write_examples package) and replace everything in the class (except the package statement at the top) with:

import java.io.File;
import java.io.IOException;

public class FileClassTest {
	public static void main(String[] args) throws IOException {
		File inFile = new File("src/write_examples/numbers.txt");
		System.out.println(" Does it exist? " + inFile.exists());
		System.out.println(" Can it be read? " + inFile.canRead());
		System.out.println("Can it be written? " + inFile.canWrite());
		System.out.println("Is it a directory? " + inFile.isDirectory());
		System.out.println(" Is it a file? " + inFile.isFile());
		System.out.println(" Is it hidden? " + inFile.isHidden());
		System.out.println(" Number of bytes: " + inFile.length() + " bytes");
		System.out.println(" Absolute path: " + inFile.getAbsolutePath());
		System.out.println(" Path: " + inFile.getPath());
		System.out.println(" Parent: " + inFile.getParent());
		System.out.println(" Last modified: " + new java.util.Date(inFile.lastModified()));
		
		// Derive the absolute path without the file name.
		String absPath = inFile.getAbsolutePath();
		int posEndPath = absPath.lastIndexOf(File.separator);
		String filePath = absPath.substring(0,posEndPath+1);
		System.out.println("Abs path (derived): " + filePath);
	}
}

b. Run and verify the output. As long as numbers.txt is still in your package you will see information about that file.

c. Change the filename to one that doesn’t exist and re-run and verify the output.

d. Change the filename back to the original (numbers.txt), re-run and verify that it runs as expected.

2. Read (no action required) – A slightly more robust template for reading, where we detect whether the file exists before attempting to read might look like this:

File inFile = new File("src\\write_examples\\numbers2.txt");

if(inFile.exists()) {
	try {
		Scanner input = new Scanner(inFile);
		while(input.hasNext()) {
			// Read a token...
		}
		input.close();
	}
	catch(IOException e) {
		System.out.println(e);
	}
}
else {
	System.out.println("File doesn't exist: " + inFile.getAbsolutePath());
	System.out.println("Program terminated");
}

To allow the user to supply a new file name would be slightly more involved. A loop would need to be added that continued until a successful file name was supplied or the user indicated that the program should stop. Similarly, before writing, we could detect if the file already exists and ask the user if they want to overwrite or supply a new name.

Stage 9 - Reading & Writing Example

In this stage we illustrate both reading and writing together. The scenario is that we have a file of integers which we want to read and then write the integers that are larger than 99 to another file.

1. Do the following:

a. Create a new text file named numbers2.txt and paste these numbers into the file:

8 47 333 555 1 888 9 4 2 222

b. Create a class named ReadWriteIntegers (in the write_examples package) and replace everything in the class (except the package statement at the top) with:

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;

public class ReadWriteIntegers {

	public static void main(String[] args) {
		File inFile = new File("src/write_examples/numbers2.txt");
		File outFile = new File("src/write_examples/bigNumbers.txt");

		try {
			Scanner input = new Scanner(inFile);
			PrintWriter writer = new PrintWriter(outFile);
			while(input.hasNext()) {
				int val = input.nextInt();
				if(val > 99) {
					writer.print(val + " ");
				}
			}
			input.close();
			writer.close();
				System.out.println("Program completed successfully");
		}
		catch(IOException e) {
			System.out.println(e);
		}
	}
}

c. Run and verify the console output:

Program completed successfully

d. Select the write_examples package in the Package Explorer and choose: File, Refresh (or F5) and you should see the output file, bigNumbers.txt appear. Open it and verify the contents.

Submission

2. Do the following:

a. Zip all the folders (packages) under the src folder into a zip file named: lab10_lastname.zip
b. [bookmark: _GoBack]Upload your zip file to the lab10 dropbox in Blazeview.

You are done!

10

image2.jpeg

image3.png

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image1.jpeg

