CS 1302 – Lab 09

This is a tutorial on exceptions. There are 6 stages to complete this lab:

	Stage
	Title

	1
	Understanding Exceptions and try/catch

	2
	try/catch/finally

	3
	Exception Hierarchy

	4
	Throwing an Exception

	5
	Exception Bubbling

	6
	Example

To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Understanding Exceptions and try/catch

1. (Read, no action required) – When your program performs an illegal operation (divide by zero, access an element in an array that is beyond the length of the array, an incorrect cast, etc.) an exception is thrown. If the exception is not caught then program terminates.

2. Do the following:

a. Create a Project named, lab9_lastName, e.g. lab9_gibson.
a. Create a package named exception_examples1.
b. Create a class named Example1 and replace everything in the class (except the package statement at the top) with:

public class Example1 {
	
	public static void main(String[] args) {
		int x=0;
		System.out.println(inverse(x));
		System.out.println("all done");
	}
	
	public static double inverse(int x) {
		return 1/x;
	}
}

3. Run the program. The output should be as shown below. Note the following using the figure below and your own output (which should be the same):

· On line 7, the call to inverse(0) transfers control to the inverse method.
· On line 11, there is an attempt to divide 1 by 0. Since this is an illegal operation, the JVM throws an ArithmeticException and the program terminates.
· The Console window shows the exception that was thrown and the stack trace, which is the sequence of statements (method calls) that lead to the exception. For example: The exception occurred in the inverse method on Line 12, inverse was called in main on Line 7. The stack trace is very useful when trying to determine why an exception was thrown.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\06_ch12_Exceptions\d1.jpg]

4. Read (no action required) – Java provides a mechanism to prevent the program from terminating when an exception is thrown. To do this, you use a try/catch As shown below, you surround code that might fail (cause an exception) with a try block. Then, immediately following, you provide a catch block which is code that is executed when an exception is thrown. When the catch block completes, the program continues to run immediately after the catch block.

try {
	// code that may fail
}
catch(Exception e) {
	// Code to recover from failure
}

5. Create a class named Example2 and replace everything in the class (except the package statement at the top) with:

public class Example2 {
	public static void main(String[] args) {
		int x=0;
		try {
			System.out.println(inverse(x));
		}
		catch(ArithmeticException e) {
			System.out.println("exception caught");
		}
		System.out.println("all done!");
	}

	public static int inverse(int x) {
		return 1/x;
	}
}

6. Run the program. The output should be as shown below. Note the following using the figure below and your own output (which should be the same):

Case 1 – try/catch when an Exception is Thrown

		Step
	Description

	1
	Line 7: inverse is called with the argument 0

	2
	Line 16: An attempt is made to divide by 0, and an ArithmeticException is thrown

	3
	Line 9: The exception is caught
Line 10: A message is printed and the catch block ends

	4
	Line 12: The program continues normally, a message is printed

Note that Line 7 was never executed. In other words, nothing was printed.

	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\06_ch12_Exceptions\d2.jpg]

7. Step through the code with the debugger. Do the following:

a. Set a break point on Line 5 (int x=0).
b. Choose: Run, Debug, answer “Yes” to switch perspectives.
c. Choose: Run, Step Into (F5) repeatedly until the program ends.
d. Choose: Run, Terminate to make sure the debugger is closed.
e. Repeat, studying the order of execution.
f. Return to the Java Perspective (upper-right)

8. In ExceptionExample2 change the value of x to 4 and run the program. Note the following using the figure and your own output (which should be the same):

Case 2 – try/catch when no Exception is Thrown

		Step
	Description

	1
	Line 7: inverse is called with the argument 4

	2
	Line 16: 1 is divided by 4 (integer division, so result is 0) and the method ends.

	3
	Line 7: The value 0 is returned and printed and the try block ends

	4
	Line 12: The program continues normally, a message is printed

Note that the catch block was not executed.
	[image: G:\eDataClasses\CS 1302 - Programming 2\notes\06_ch12_Exceptions\d3.jpg]

9. Run through the debugger as above.

10. Read (no action required) – Sometimes the code in the catch block can actually fix a problem. Also, the exception might be logged in a database. Without guidance on how to fix a problem, etc. we will simply print the exception, and/or possibly the stack trace.

11. In ExceptionExample2 do the following:

a. Change the value of x back to 0
b. Replace the code in the catch block with:

System.out.println("exception caught: " + e);
System.out.println("\nstack trace:\n");
e.printStackTrace();

c. Run the program and examine the output. Note that the exception’s toString returns the class of the exception and a brief description.

java.lang.ArithmeticException: / by zero

Stage 2 - try/catch/finally

1. Read (no action required) – A finally block can be placed after a catch block. Code in the finally block is always executed no matter whether an exception was thrown or not.

try {
	// code that may fail
}
catch(Exception e) {
	// Code to recover from failure
}
finally {
	// Code that always executes
}

2. Create a class named Example3 in the exception_examples1 package and replace everything in the class (except the package statement at the top) with:

public class Example3 {
	public static void main(String[] args) {
		int x=0;
		try {
			System.out.println(inverse(x));
		}
		catch(ArithmeticException e) {
			System.out.println("exception caught");
		}
		finally {
			System.out.println("finally block executed");
		}
		System.out.println("all done!");
	}

	public static int inverse(int x) {
		return 1/x;
	}
}

3. Do the following

a. Set a breakpoint on the line inside the try block: System.out.println(inverse(x));
b. Run the debugger and step through the code using F5 (Run, Step Into)
c. Verify the output:

exception caught
finally block executed
all done!

d. Change the value of x to 4 and and then step through the debugger again. Verify the output:

0
finally block executed
all done!
Stage 3 - Exception Hierarchy

1. Read (no action required) –

a. The Exception hierarchy is shown below. The RuntimeException class represents errors made by the programmer. You probably recognize some of the subclasses.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\06_ch12_Exceptions\d4.jpg]

b. Consider the catch block’s parameter, for example, RuntimeException as shown below. This catch block will catch any exception of that class or any subclass. Thus, the example below will catch any exception that is thrown as a result of code you have written (e.g. ArithmenticException, NullPointerException, etc.).

catch(RuntimeException e) {
	System.out.println(e);
}

The catch block below will only catch an ArithmeticException, or any subclass. If another type of exception is thrown it will not be caught. Instead, it will be rethrown to the calling method. If the exception is never caught, then the program will terminate.

catch(ArithmeticException e) {
	System.out.println(e);
}

c. Thus, if you use a RuntimeException (or Exception) as the catch parameter, you will catch pretty much anything. Is that the best thing to do – sometimes. We will say more in class, or possibly this lab.

	

2. Do the following:

a. Create a class named Example4 in the exception_examples1 package and replace everything in the class (except the package statement at the top) with:

import java.util.ArrayList;
import java.util.Arrays;

public class Example4 {
	public static void main(String[] args) {
		ArrayList<Integer> ints = new ArrayList<>(Arrays.asList(4,6,0,3,5));
		int x, y;
		x=1; y=3; // No exception thrown
		try {
			System.out.println(divide(ints, x, y));
		}
		catch(ArithmeticException e) {
			System.out.println("Exception Caught:");
			System.out.println(e);
		}
		finally {
			System.out.println("finally block executed");
		}
		System.out.println("all done!");
	}

	public static double divide(ArrayList<Integer> ints, int x, int y) {
		return ints.get(x)/ints.get(y);
	}
}

b. Run the code above, verify the output, and note that no exception was thrown.

2.0
finally block executed
all done!

c. Comment out the line where: x=1; y=3 and replace with:

x=1; y=2; // Arithmetic exception thrown

d. Run the code, verify the output, and note that an ArithmeticException was thrown and caught.

Exception Caught:
java.lang.ArithmeticException: / by zero
finally block executed
all done!

e. Comment out the line where: x=1; y=2 and replace with:

x=1; y=20; // Index out of bounds exception thrown

f. Run the code. The output should be:

finally block executed
Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 20, Size: 5
	at java.util.ArrayList.rangeCheck(Unknown Source)
	at java.util.ArrayList.get(Unknown Source)
	at exception_examples1.Example4.divide(Example4.java:27)
	at exception_examples1.Example4.main(Example4.java:14)

Note:
· An IndexOutOfBoundsException was thrown but not caught.
· It was not caught because IndexOutOfBoundsException is not a subclass of ArithmeticException. Verify this by looking back at the Exception hierarchy in the figure above.
· The finally block executed.

g. Change the catch block’s parameter to: RuntimeException

catch(RuntimeException e) {

h. Run the code verifying the output. Note that this time the exception was caught.

Exception Caught:
java.lang.IndexOutOfBoundsException: Index: 20, Size: 5
finally block executed
all done!

Note:
· The exception was caught because IndexOutOfBoundsException is a subclass of RuntimeException. Verify this by looking back at the Exception hierarchy in the figure above.

i. Change back to the case where: x=1; y=2;:

x=1; y=2; // Arithmetic exception thrown

j. Run the code verifying the output.

Exception Caught:
java.lang.ArithmeticException: / by zero
finally block executed
all done!

Note:
· The exception was caught because ArithmeticException is a subclass of RuntimeException. Verify this by looking back at the Exception hierarchy in the figure above.

k. Comment out this line:

ArrayList<Integer> ints = new ArrayList<>(Arrays.asList(4,6,0,3,5));

And replace with

ArrayList<Integer> ints = null;

l. Run the code verifying the output.

Exception Caught:
java.lang.NullPointerException
finally block executed
all done!

Note:
· The exception was caught because NullPointerException is a subclass of RuntimeException. Verify this by looking back at the Exception hierarchy in the figure above.

Stage 4 - Throwing an Exception

1. (Read, no action required) –

a. Java allows the programmer to explicitly throw an exception if the program detects a situation it is not prepared to handle. For example, to illustrate the syntax, any of these are valid:

throw new RuntimeException("Description of error");
throw new ArithmeticException("Description of error");
throw new IllegalArgumentException("Description of error");

Note:
· All Exception classes have a constructor that accepts a description of the problem. If the exception is thrown, caught, and printed, the description will be displayed.
· IllegalArgumentException is a useful as it represents that an argument to a method is not valid. For example, if an attempt was made to create an Account object with a negative balance.

b. Example – Suppose we have a Dog class whose constructor requires a name as an argument and that we require that the name be at least 2 characters long. One way to enforce this to have the Dog constructor throw an exception if the name is not 2 or more characters long. For example:

public Dog(String name) {
	if(name.length() < 2) {
		throw new IllegalArgumentException("Name length must be 2 or more");
	}
	this.name = name;
}

2. Create a class named Dog and replace everything in the class (except the package statement at the top) with:

public class Dog {
	private String name;
	
	public Dog(String name) {
		if(name.length() < 2) {
			throw new IllegalArgumentException("Name length must be 2 or more");
		}
		this.name = name;
	}

	@Override
	public String toString() {
		return "Dog's name is: " + name;
	}
}

3. Create a class named DogTest and replace everything in the class (except the package statement at the top) with:

public class DogTest {

	public static void main(String[] args) {
		testDog_NoTryCatch();		
	}

	private static void testDog_NoTryCatch() {
		System.out.println("testDog_NoTryCatch()");
		String name = "A";
		Dog d = new Dog(name);
		System.out.println("Dog created");
		System.out.println(d);
		System.out.println("Program over!");
	}
}

4. Run and verify that an IllegalArgumentException is thrown and the program terminates:

testDog_NoTryCatch()
Exception in thread "main" java.lang.IllegalArgumentException: Name length must be 2 or more
	at first_example.Dog.<init>(Dog.java:7)
	at first_example.DogTest.testDog_NoTryCatch(DogTest.java:15)
	at first_example.DogTest.main(DogTest.java:6)

5. Change the name of the dog from “A” to ”Zorro”, run and verify that no exception is thrown and the program terminates normally.

testDog_NoTryCatch()
Dog created
Dog's name is: Zorro
Program over!

6. A better approach would be to surround the dog creation with a try/catch block. Add these two test methods to DogTest.

private static void testDog_ValidName() {
	System.out.println("\ntestDog_ValidName()");
	String name = "Zorro";
	Dog d;
	try{
		System.out.println("trying: new Dog(\"Zorro\")");
		d = new Dog(name);
		System.out.println("Dog created");
		System.out.println(d);
	}
	catch(RuntimeException e){
		System.out.println("Dog not created, invalid name");
	}
	System.out.println("Program over!");
}

private static void testDog_InvalidName() {
	System.out.println("\ntestDog_InvalidName()");
	String name = "A";
	Dog d;
	try{
		System.out.println("trying: new Dog(\"A\")");
		d = new Dog(name);
		System.out.println("Dog created");
		System.out.println(d);
	}
	catch(RuntimeException e){
		System.out.println("Dog not created, invalid name");
	}
	System.out.println("Program over!");
}

7. Add these lines to main:

testDog_ValidName();
testDog_InvalidName();

8. Run and verify the output:

testDog_ValidName()
trying: new Dog("Zorro")
Dog created
Dog's name is: Zorro
Program over!

testDog_InvalidName()
trying: new Dog("A")
Dog not created, invalid name
Program over!

Stage 5 - Exception Bubbling

1. (Read, no action required) – Suppose main calls method1 which calls method2. If method2 throws an exception, there are three cases:

1. If method1 has a try/catch that can catch the exception, then it will and method1 will resume after completing the catch block.

2. If method1 does not have a try/catch (or have one that can catch the exception), then method1 will throw the exception to main and there are two subcases:

a. If main has a try/catch that can catch the exception, then it will and main will resume after completing the catch block.
b. If main does not have a try/catch (or have one that can catch the exception), then the program will terminate.

Thus, we say that exceptions bubble up until they are caught or the program terminates.

2. Create a class named DogTestBubbling and replace everything in the class (except the package statement at the top) with:

public class DogTestBubbling {

	public static void main(String[] args) {
		try {
			testDog_InvalidName();
		}
		catch(RuntimeException e){
			System.out.println("Dog not created, invalid name");
		}
	}

	private static void testDog_InvalidName() {
		System.out.println("testDog_InvalidName()");
		String name = "A";
		System.out.println("trying: new Dog(\"A\")");
		Dog d = new Dog(name);
		System.out.println("Dog created");
		System.out.println(d);
	}
}

3. (Read, no action required) Note that main calls testDog_InvalidName which calls the Dog constructor. The Dog constructor will throw an exception. Since there is no try/catch, the exception is then thrown to main where it is caught.

4. Run the code and verify your understanding of this.

Stage 6 - Example

1. Create an Account class with these features:

a. A balance (double) instance variable.
b. A constructor that accepts a balance and initializes it provided the balance is greater than 0. Otherwise, it should throw an IllegalArgumentException (with a suitable description).
c. A toString method that displays the balance.
d. A main method that tries to create an Account and if any exception is thrown, the exception is printed. Otherwise, the Account object is printed.

2. Run and test your class with initial balances that are valid, and invalid.

Submission

1. Do the following

a. Zip all the folders (packages) under the src folder into a zip file named: lab9_lastname.zip
b. [bookmark: _GoBack]Upload your zip file to the lab9 dropbox in Blazeview.

You are done!

9

image3.jpeg

image4.jpeg

image1.jpeg

image2.jpeg

