CS 1302 – Lab 7
The ArrayList Class

This is a tutorial on inheritance and the ArrayList class. There are 2 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	The ArrayList Class
	11.11

	2
	The Object Class’s equals Method
	11.11

To make this document easier to read, it is recommended that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - The ArrayList Class

In this stage we introduce the ArrayList class from the Java API. An ArrayList is a container for holding objects just as an Array is; however, it has some added features and benefits.

1. Do the following:

a. Create a Java project in Eclipse named: lab07_lastName.

b. Create a new package named array_list

c. Create a new class named ArrayListExamples in the array_list package. Check the option to generate a main.

d. Add this import above the class definition and below the package statement.

import java.util.ArrayList;

e. Add this statement inside main.

ArrayList<String> cities = new ArrayList<>();

Note:
· The ArrayList class is a generic class. In short, what this means is that we must specify what type of object we want to store in the list, i.e <String>.
· We don’t have to specify how many items the list will hold, it can hold any number of items.

f. The ArrayList class has an add(object) method to add an object to the end of the list. Add these statements to the end of main:

cities.add("New York");
cities.add("Chicago");
cities.add("Atlanta");

g. The ArrayList class has an get(i) method to obtain a reference to the object in the ith position. The index of elements is similar to an Array, starting at 0, 1, … . Add the statements below to the end of main and run. Verify that “Chicago” is displayed.

String city = cities.get(1);
System.out.println("-->Illustrate get(i) method:");
System.out.println(city);

h. The ArrayList class has a size method that returns the number of objects in the list. Add the statements below and run. Verify that “3” is displayed.

int size = cities.size();
System.out.println("\n-->Illustrate size() method:");
System.out.println(size);

i. You can iterate over an ArrayList using an enhanced for loop just as you would an Array. Add the statements below and run. Verify that all three cities are displayed.

System.out.println("\n-->Illustrate enhanced for loop:");
for(String c : cities) {
	System.out.print(c + " ");
}
System.out.println();

j. You can also iterate over an ArrayList using an indexed for loop similar to the way you would an Array. Add the statements below and run. Verify that all three cities are displayed.

System.out.println("\n-->Illustrate indexed for loop:");
for(int i=0; i<cities.size(); i++) {
	System.out.print(cities.get(i) + " ");
}
System.out.println();

The highlighted lines above use ArrayList methods.

k. The ArrayList class has a add(index, obj) method that adds obj at index moving the other items over one to the right (if necessary). Add the statements below to the end of main and run. Verify that “Memphis” is added between “New York” and “Chicago”.

System.out.println("\n-->Illustrate add(index,object) method:");
cities.add(1,"Memphis");
for(String c : cities) {
	System.out.print(c + " ");
}
System.out.println();

l. The ArrayList class has a toString method that returns a string with all the items in the list. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate toString method:");
System.out.println(cities.toString());

m. The ArrayList class has a contains(obj) method that returns true if it contains obj and false otherwise. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate contains(object) method:");
System.out.println("is Memphis in list? " + cities.contains("Memphis"));
System.out.println("is Seattle in list? " + cities.contains("Seattle"));

n. The ArrayList class has an indexOf(obj) method that returns location of obj in the list if it exists, and -1 otherwise. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate indexOf(object) method:");
System.out.println("What is location of Chicago in list? " + cities.indexOf("Chicago"));
System.out.println("What is location of Detroit in list? " + cities.indexOf("Detroit"));

o. The ArrayList class has a remove(index) method that removes the obj at index from the list moving items to the right over one to the left (if necessary). It also returns the removed item (but of course we don’t have to catch the return). Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate remove(index) method:");
System.out.print("list before remove: ");
System.out.println(cities.toString());
String cRemoved = cities.remove(2);
System.out.print("list after remove : ");
System.out.println(cities.toString());
System.out.println("city removed: " + cRemoved);

p. The ArrayList class has an overloaded remove method, remove(obj) method that removes obj from the list if it is found, returning true in this case, or false otherwise. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate remove(object) method:");
System.out.print("list before remove: ");
System.out.println(cities.toString());
cities.remove("Memphis");
System.out.print("list after remove : ");
System.out.println(cities.toString());

q. The ArrayList class has an addAll(list:ArrayList) method that adds all the elements in list to this ArrayList. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate addAll(list) method:");
// Create a new list of cities
ArrayList<String> cities2 = new ArrayList<>();
cities2.add("Oakland");
cities2.add("Portland");

System.out.print("cities: ");
System.out.println(cities);
System.out.print("cities2: ");
System.out.println(cities2);

// Add new list to original list
cities.addAll(cities2);
System.out.print("cities after addAll: ");
System.out.println(cities);

r. The ArrayList class has a constructor that accepts another ArrayList, new ArrayList<>(arrayList), that creates a new ArrayList from the input list. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate constructor that accepts another list:");
ArrayList<String> cities3 = new ArrayList<>(cities);
System.out.print("cities : ");
System.out.println(cities);
System.out.print("cities3: ");
System.out.println(cities3);

s. The ArrayList class defines the clear method to remove all the items from the list and sets the size to 0. It also defines the isEmpty method that returns true if the list is empty (size=0) and false otherwise. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate isEmpty & clear methods:");
System.out.println("is cities empty? " + cities.isEmpty() + ", size=" + cities.size());
cities.clear();
System.out.println("is cities empty? " + cities.isEmpty() + ", size=" + cities.size());

2. Do the following:

a. Create a new class named ArrayListExamples2 in the array_list package. Check the option to generate a main.
b. Add these imports above the class definition and below the package statement.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

c. The Arrays[footnoteRef:1] class has a useful static method, asList that accepts an array and returns an ArrayList. This is useful for creating and populating an ArrayList, particularly when testing. Add the statements below, run, and verify the output. [1: https://docs.oracle.com/javase/9/docs/api/java/util/Arrays.html]

System.out.println("\n-->Illustrate Arrays.asList:");
String[] citiesAry = {"Boston", "Philly", "Norfolk"};
ArrayList<String> cities = new ArrayList<>(Arrays.asList(citiesAry));
System.out.println(cities);

This can also be done with more consise notation. Add the statements below, run, and verify the output.

System.out.println("\n-->Illustrate Arrays.asList, again:");
ArrayList<String> cities2 = new ArrayList<>(Arrays.asList("SF", "KC", "NYC"));
System.out.println(cities2);

d. The Collections class defines a number of static methods that operate on lists. Three such methods are shown highlighted below. Add the code below to the end of main, run, and verify the output.

System.out.println("\n-->Illustrate Collections methods:");
System.out.println("before sort: " + cities);
Collections.sort(cities);
System.out.println("after sort : " + cities);
System.out.println("'min' city: " + Collections.min(cities));
System.out.println("'max' city: " + Collections.max(cities));
Stage 2 - [bookmark: OLE_LINK2]The Object Class’s equals Method

1. (Read, no action required)

a. The Object class defines an equals method:

public boolean equals(Object o)

Thus, every class inherits this method. The implementation of equals in the Object class returns true if two objects occupy the same location in memory and false otherwise. For example:
[image: G:\eDataClasses\CS 1302 - Programming 2\notes\04_ch11_Inheritance\d6.jpg]
BasicAccount ba1 = new BasicAccount(100.0);
BasicAccount ba2 = new BasicAccount(100.0);
BasicAccount ba3 = ba1;

System.out.println(ba1.equals(ba2)); // false
System.out.println(ba1.equals(ba3)); // true

Thus, the implementation of equals in the Object class is exactly the same as the “==” boolean operator:

System.out.println(ba1==ba2); // false
System.out.println(ba1==ba3); // true

b. Many classes override equals to define what it means for two objects to be “equal.” For example, the String class overrides equals to return true if the contents of two strings are the same. For example:

String x = "Cat";
String y = "Hat";
String z = "Cat";

System.out.println(x.equals(y)); // false
System.out.println(x.equals(z)); // true

c. It is frequently useful to override the equals method to supply your own, custom definition of equals. I call this logical equality. In other words, implementing equals so that two distinct objects in memory are considered equal. The signature of the equals method is:

public boolean equals(Object o)

Notice that it accepts an Object. Thus, when we override it we must cast o to the class that is overriding equals (usually). Thus, the overridden implementation of equals will compare this object to the argument, o, in a way that makes sense for a particular context, to determine if they are equal.

d. Suppose we have a Person class as shown below and we want to we override equals to return true when two Person objects have the same ssn, regardless of their names.

	Class
	Sample Code

	public class Person {
protected int ssn;
protected String name;
	
public Person(String name, int ssn) {
this.ssn = ssn;
this.name = name;
}
	
@Override
public boolean equals(Object o) {
if(o instanceof Person) {
Person p = (Person)o;
if(this.ssn == p.ssn) {
return true;
}
else {
return false;
}
}
else {
return false;
}
}

@Override
public String toString() {
return name + ", " + ssn;
}
}
	
Person p1 = new Person("Shay", 123);
Person p2 = new Person("Shay", 456);
Person p3 = new Person("Julie", 123);

System.out.println(p1.equals(p2)); // false
System.out.println(p1.equals(p3)); // true

	

e. Note that the equals method above can be written much more succinctly

public boolean equals(Object o) {
	if(o instanceof Person) {
		Person p = (Person)o;
		return this.ssn == p.ssn;
	}
	return false;
}

2. Do the following:

a. Create a new package named equals_example

b. Create a class named Person and replace the code with:

public class Person {
	private int ssn;
	private String name;
		
public Person(String name, int ssn) {
this.ssn = ssn;
this.name = name;
}
	
	@Override
	public boolean equals(Object o) {
[bookmark: _GoBack]		if(o instanceof Person) {
			Person p = (Person)o;
			return this.ssn == p.ssn;
		}
		return false;
	}

	@Override
	public String toString() {
return "(" + name + ", " + ssn + ")";
	}
}

3. Do the following:

a. Create a class named PersonTest replace the code with:

public class PersonTest {

	public static void main(String[] args) {
		testEquals();

	}
	public static void testEquals() {
System.out.println("-->testEquals()");
		Person p1 = new Person("Shay", 123);
		Person p2 = new Person("Shay", 456);
		Person p3 = new Person("Julie", 123);
		
		System.out.println(p1.equals(p2)); // false
		System.out.println(p1.equals(p3)); // true
		
		// Remember that "==" return true when two
		// objects occupy the same place in memory.
		// Thus p1 and p3 are "logically" equal even
		// though they occupy different places in memory.
		System.out.println(p1==p3); // false
	}
}
b. Study the test code above and then run and verify the output.

4. (Read, no action required)

a. As stated earlier, an ArrayList can hold any type of object. For example, an ArrayList that holds Person objects:

ArrayList<Person> people = new ArrayList<>();

b. The following methods in the ArrayList class rely on the implementation of the equals method to work properly.

public boolean contains​(Object o)
public int indexOf​(Object o)	
public int lastIndexOf​(Object o)
public boolean remove​(Object o)
In other words, if you want to use these methods on an ArrayList of a custom class, then the class must override equals.

5. Do the following:

a. Add the method below to PersonTest class:

public static void testContains() {
	System.out.println("\n-->testContains()");
	ArrayList<Person> people = new ArrayList<> (Arrays.asList(
			new Person("Shay", 811),
			new Person("Xavier", 456),
			new Person("Layla", 123),
			new Person("Malik", 224)));
	
	// Suppose we know a person's SSN and we want
	// to see if they are in the list. We can create
	// a "dummy" person object:
	Person p1 = new Person("unknown", 123);
	// Then pass the dummy person to the contains method.
	// Remember that the contains method is relying on the
	// equals method to decide if the person is in the list,
	// and that the equals method is only looking at the
	// SSN, so that the name doesn't matter.
	if(people.contains(p1)) {
		int loc = people.indexOf(p1);
		Person pFound = people.get(loc);
		System.out.println(pFound);
	}
	
	Person p2 = new Person("unknown", 999);
	
	if(people.contains(p2)) {
		System.out.println(p2 + " - found");
	}
	else {
		System.out.println(p2 + " - not found");
		
	}
	
}

b. Add these two imports:

import java.util.ArrayList;
import java.util.Arrays;

c. Add a call to this method in main:

testContains();

d. Study the code in testContains carefully. Read and understand the comments. Then, run and verify the output.

Submission

3. Do the following

a. Zip all the folders (packages) under the src folder into a zip file named: lab7_lastname.zip
b. Upload your zip file to the lab7 dropbox in Blazeview.

You are done!

16

image1.jpeg
bal—>

:BasicAccount

ba3

balance=100.0

ba2—>

:BasicAccount

balance=100.0

