[bookmark: _Hlk110931391]Lab 1 – Eclipse & JavaFX
Last updated: 1.12.2024
Contents
1	Introduction	1
2	Install Java	2
3	Install Eclipse	3
4	Test Eclipse for Java Development	5
5	Eclipse JavaFX Configuration	8
5.1	Install e(fx)clipse	8
5.2	Create a JavaFX Application	9
5.3	Download JavaFX Libraries	11
5.4	Build User Library	13
5.5	Attach JavaFX Libraries to Project	16
5.6	Customize the GUI	18
5.7	Attach JavaFX Libraries to Subsequent Projects	20
5.8	Use Downloaded Packages with JavaFX Code	20
5.9	Use Jar File with JavaFX Code	22
6	IntelliJ JavaFX Configuration	24
6.1	Install IntelliJ	24
6.2	Create a JavaFX Application	25
6.3	Use Downloaded Packages with JavaFX Code	29
6.4	Use Jar File with JavaFX Code	31
7	Submission	33
Appendix 1	Changing the JDK Compliance Level	34
Appendix 2	Change JRE	34
Appendix 3	Old Resources	38
	
[bookmark: _Introduction][bookmark: _Toc155953031]Introduction
The objective of this Lab is to:
Sections 2-4 – Install Java (if needed) and Eclipse (the IDE we will use to write Java programs) and test it. This setup will be used for the majority of the course: Labs 1-14, and HW’s 1-9.
Section 5 – Install the libraries necessary to create JavaFX projects (so that we can write GUI applications) using Eclipse. This will be used towards the end of the semester: Only Labs 15 & 16, and HW 10 require JavaFX.
Section 6 – If the Section 5 directions fail, you will install IntelliJ (another IDE for writing Java programs).

[bookmark: _Install_Java][bookmark: _Toc155953032]Install Java
In this section we will verify that we have Java SE installed and if not, install it.
1. Check to see if you have some version of Java SE installed.
a. Launch the Control Panel app and (i) find “Programs” (on my computer I had to search within the CP), (ii) choose: “Add or remove programs.”
b. When the list of programs populates, scroll down and find Java. On my computer, the display shows I’m using: “Java SE Development Kit 8 Update 112” as shown in the figure below. If you have version 18 or above (current version is 20 as of 7.27.2023) them proceed to Stage 2. Otherwise, continue below.
[image:]
2. Install the most recent version of Java SE. Do this by visiting: https://www.oracle.com/java/technologies/downloads/. Scroll down to the downloads for the most recent version of Java. It should say something like this:
Java Development Kit 20.0.2 downloads
Choose Windows (or Mac or Linux) to see the correct choices as shown below for Windows (except title and version are older). Install by running the exe (for Windows, X64 Installer).
[image:]
[bookmark: _Install_Eclipse][bookmark: _Toc76630923][bookmark: _Toc155953033]Install Eclipse
These directions assume you are using Windows.
1. Visit the site below and choose: “Download x86_64” (as of 7.27.23). Note that the installer says it handles mac, linux, and windows.
https://www.eclipse.org/downloads/
[image:]
2. On the resulting dialog, choose: Download
[image:]
3. An exe installer will download. Run it to install. On the resulting dialog, choose: “Eclipse IDE for Java Developers”
[image:]

4. Note the installation folder: c:\users\yourID\eclipse\java-… You may need to check that some time. In other words, it is not in the usual, Program Files.
[image:]
5. At the conclusion, it will ask you to launch Eclipse. Choose: Launch. At the next dialog, it will ask you to confirm the workspace. CHOOSE: CANCEL. We will run it in just a minute.
6. [image:]Find your desktop icon as shown on the right.

[bookmark: _Test_Eclipse_for][bookmark: _Toc155953034]Test Eclipse for Java Development
1. [image:]Run Eclipse, accept the default workspace. Eclipse uses the term, workspace, to refer to any folder where you will store one or more Java Projects. In a later lab, we discuss the use of a workspace in a bit more detail. So, accept the default, or create a folder anywhere you like and use that.

2. In Eclipse, do the following:
a. Choose: File, New, Java Project.
b. Type the Project name as shown below (no spaces): “lab1_hello_world”.
c. Uncheck “Create module-info.java file”.
d. Choose: Finish.
Note: your execution environment JRE will possibly be different.
[image:]

3. [image:]Do the following:

a. As shown on the right, the project will be shown in the Package Explorer. You may need to close the Welcome page first.

Note: If the Package Explorer is not visible, you can display it by choosing: Window, Show View, Package Explorer.

b. Expand the project node and identify the src node. The code you write will be stored here.

4. Create a class by doing the following (reference figure below):
a. Select the src node.
b. Choose: File, New, Class
c. Supply the Name: “HelloWorld” (Note that your “Source folder” will be different than shown in the figure)
d. Select the checkbox that says: “public static void main…”
e. Choose: Finish
[image:]
5. [image:]The code window will be displayed as shown on the right.

6. [image:]Add this line of code to main:
System.out.println("Hello World");

7. To run the program, Choose: Run, Run (or, alternately, press the Green arrow icon). The output is displayed in the console (see bottom of screen). (If you don’t see the console, choose: Window, Show View, Console). If you have multiple monitors, it is convenient to pull the Console tab to another monitor.
[image:]

8. If all went well, congratulations, you have just run your (possibly) first Java program in Eclipse. Close Eclipse. As stated earlier, this will get you through the majority of the course.
[bookmark: _Eclipse_JavaFX_Configuration][bookmark: _Toc155953035]Eclipse JavaFX Configuration
· If any of these steps in this section do not work, move on to Section 6 where you will download another IDE (IntelliJ) which will work.
Note: if the steps in Section 6 also fail, this is OK. We will not use JavaFX until early November. In the meantime, you may figure out how to get it to work by then or you can work in the CS Open Lab. So, Step 3 above covers everything we do for Labs 1-14, and HW’s 1-9. Only Labs 15 & 16, and HW 10 require JavaFX.
· I developed these instructions through the help of a student, various web sites, and trial-and-error. However, on 7.27.2023, as I was reviewing these instructions, I found this video that is almost identical to these instructions:
[bookmark: _Toc155953036]Install e(fx)clipse
To create Graphical User Interfaces (GUI) we will use the JavaFX libraries. This will involve 2 steps. The first is to install the E(fx)clipse plugin. When this is installed, it will allow the user to create a “JavaFX Project” which includes a sample GUI.
1. [image:]In Eclipse, choose: Help, Eclipse Marketplace
2. In the Find field, type: “e(fx)clipse.” Then choose: Go

3. [image:]The result should be similar to the figure on the right (except different version). Choose: Install
Note: the install dialog will close and Eclipse will be minimized. However, it is still installing. The Eclipse icon in the Task Bar will have a green bar moving left to right showing that it is still installing. Might take a minute or two.
4. Choose to: Restart Now when prompted.

[bookmark: _Create_a_JavaFX][bookmark: _Toc155953037]Create a JavaFX Application
	Introduction
When you create a JavaFX project, it automatically creates a GUI consisting only of an empty window. In this section, we create a JavaFX project; however, the GUI will be filled with compile errors and won’t run. This is because we have not downloaded the JavaFX libraries that the sample code depends on. Here is where we are going in the next few sections
Section 5.2 – Create a JavaFX Project with a GUI which doesn’t compile
Section 5.3 – Download the required JavaFX libraries.
Section 5.4 – Build a User Library to hold the JavaFX libraries.
Section 5.5 – Attach the JavaFX libraries to the project. At the conclusion, the GUI from Section 5.2 will run.
Sections 5.6-5.9 – Test the setup under various scenarios.

1. [bookmark: _Hlk110936063][image:]Do the following: in Eclipse, as shown on the right, choose: File, New, Other, JavaFX, JavaFX Project, Next

2. Provide a Project name: samplegui and choose: Finish
WARNING:
· The name cannot have any spaces or special characters and should be lower-case
· Make sure: Create module-info.java is checked at the bottom
[image:]

3. Reference the figure below.
· An application package was created. Inside this package is a class, Main.java that contains a very simple Gui.
· Double-click Main.java to open it as shown below on the right.
· You’ll see lots of compilation errors. We’ll resolve those next.
[image:]

[bookmark: _Toc155953038]Download JavaFX Libraries
In this section, the JavaFX libraries are downloaded.
1. Visit this site below and scroll down to “Downloads”. Fill the drop-downs with appropriate values (your version will probably be 20.0.2 or later) and download.
https://gluonhq.com/products/javafx/
[image:]

2. (Read, no action required) You will need to unzip the downloaded file somewhere. It doesn’t matter where, you just need to remember the path to this folder. I’m going to create a folder named: c:\javafx and unzip mine there.
3. Create a folder named: javafx in the root folder for the C drive.
4. Drag the downloaded file (openjfx-20.0.2_windows-x64_bin-sdk.zip) to the javafx folder from the step above

5. Unzip the file to the javafx folder: right-click the file and choose: Extract All. Then Browse to the javafx folder and choose: Select Folder
[image:]
6. Then chose Extract
[image:]

7. The result will look as shown below. The files that are needed are in the lib folder. Note the path (highlighted below). You will need this path later. Either remember how to get back to it or copy it into a Word document or anywhere.
[image:]

[bookmark: _Build_User_Library][bookmark: _Toc155953039]Build User Library
In this section you will build a User Library that contains the JavaFX libraries. In the next section, we will attach this user library to the JavaFX project.
	Reminder: A few people have problems with this. Make sure you have retried this with a NEW workspace, etc before quitting. As I stated earlier, and further below, if it doesn’t work, you will advance to another Section.

1. In Eclipse, choose: Window, Preferences. Then, from the tree on the left, choose: Java, Build Path, User Libraries
[image:]

2. Choose: New, and then provide the name: JavaFX and then OK
[image:]
3. Choose from the right: Add External Jars
[image:]

4. Navigate to the JavaFX jar files (where you unzipped them earlier), select them, and choose: Open
[image:]
5. Choose: Apply and Close
[image:]

[bookmark: _Attach_JavaFX_Libraries][bookmark: _Toc155953040]Attach JavaFX Libraries to Project
In this section you will attach the JavaFX user library from the previous section to the JavaFX Project you created in Section 5.2. At the conclusion, the sample GUI will compile and run (hopefully!).
	Reminder: A few people have problems with this. Make sure you have retried this with a NEW workspace, etc before quitting. As I stated earlier, and further below, if it doesn’t work, you will advance to another Section.

1. Next, we need to attach the JavaFX libraries to our project.
a. Select the SampleGui project node, right-click, and choose: Build Path, Configure Build Path
b. Choose the Libraries tab and the Modulepath node. Then choose: Add Library
[image:]
c. Choose: User Library, and then Next
[image:]

d. Select: JavaFX and Finish
[image:]
e. Choose: Apply and Close.
f. Open Main.java and the compile errors should be gone now:
[image:]

	If the compile errors are still there, you can try the following
a. Right-click the project node and choose: Build Path, Configure Build Path. Then, select: JavaFX under Modulepath and then Remove.
b. Repeat the steps in this section use Classpath instead of Modulepath.

2. [image:]Run Main by choosing: Run, Run (or the Green arrow icon) and it will display an empty Gui as shown on the right.

If something went wrong, please try again, in a new workspace (just add a “2”, etc, to the end of the workspace name when opening Eclipse. If it still doesn’t work, advance to Section 6; JavaFX is not going to work on your machine with Eclipse with these directions. You can try to find a solution on the internet if you like.
	If you get this error:
Exception in thread "main" java.lang.IllegalArgumentException: expected file name as argument
	at javafx.graphics/com.sun.javafx.css.parser.Css2Bin.main(Css2Bin.java:40)
[bookmark: _Hlk141366177]This solution has worked:
1. Right-click the project, and click Properties.
1. Select Run/Debug Settings.
1. Click Css2Bin.
1. [bookmark: _GoBack]Delete it. (from both Run and Debug configurations)
Source: https://stackoverflow.com/questions/13584356/javafx-in-eclipse-helios-illegalargumentexception-css2bin-java44
If this doesn’t work, advance to Section 6; JavaFX is not going to work on your machine with Eclipse with these directions. You can try to find a solution on the internet if you like.

	If you get this error (occurred on a Mac):
[image:]
I do not have a solution. Advance to Section 6; JavaFX is not going to work on your machine with Eclipse with these directions. You can try to find a solution on the internet if you like.

[bookmark: _Customize_the_GUI][bookmark: _Toc155953041]Customize the GUI
1. Next, we add some controls to the GUI as a very brief example of how to build a GUI. Do the following
a. Close the empty GUI window that you launched above.
b. Identify this line in the code window:
BorderPane root = new BorderPane();
c. Immediately after the line above, add these two lines (use your name):
Label lbl = new Label("Dave Gibson");
root.setCenter(lbl);
The resulting code will appear as shown below:
[image:]

d. You’ll notice a red X in the left margin that indicates a compile error. You also see the red squiggly under the Label. To resolve this compile error, we need to add in import statement. You can do this in one of three ways. Do one of the following:
i. Add this in the import section at the top of the file:
import javafx.scene.control.Label;
ii. Or, hover your mouse there and a context menu will appear as shown below. Then, choose: “Import ‘Label’ (javafx.scene.control)”
Note: below, it is the first item in the list, but might not be on your compulter. Make sure you pick the correct one.
[image:]
iii. Or, similar to ii above, click the red X and then, choose: “Import ‘Label’ (javafx.scene.control)”

2. Run Main by choosing: Run, Run (or the Green arrow icon) and it will display the Gui as shown below.
[image:]

[bookmark: _Toc155953042]Attach JavaFX Libraries to Subsequent Projects
(Read, no action required)
· If you create another JavaFX project in this workspace, all you need to do is attach the User Library as described in a Section above.
· If you create another JavaFX project in another workspace, you need to build the User Library as described in a Section above, and then attach it to the project.
· If you create another JavaFX project in this workspace, you can create the user library and automatically attach it while creating the project.all you need to do is attach the User Library as described in a Section above.
·
[bookmark: _Toc81222503][bookmark: _Toc155953043]Use Downloaded Packages with JavaFX Code
This section shows how to setup and run a JavaFX Project that has been provided to you in a zip file. The process is similar to a Section above, except that there is one additional step. This technique is important so that you can run sample code I provide to you for examples, for a homework, or a project.
1. Download: lab1.zip and unzip somewhere (doesn’t matter where). Once unzipped, you will find an example_combobox folder with 2 files inside.
[image:]

2. In the existing workspace, create a new JavaFX project with the name: examplecombobox (or any name you like with NO SPACES)
Make sure that Create module-info.java file is Checked.
3. Attach the JavaFX libraries following directions from this Section. Now, Main.java should run correctly. Verify this.
4. Copy (or drag) the example_combobox folder into src node. When prompted, choose: Copy files and folders. Open ComboBoxExample.java as shown below:
[image:]
5. ComboBoxExample.java compiles, but will not run. Try it and note the error:
Exception in Application constructor
Exception in thread "main" java.lang.reflect.InvocationTargetException
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	...
6. To make it run, we need to modify module-info.java. Open module-info.java (in the Package Explorer under the src node). The result is shown below:

[image:]

7. Add this line:
[bookmark: _Hlk119057654]opens example_combobox to javafx.graphics, javafx.fxml;
So that the file now reads:
module examplecombobox {
	requires javafx.controls;
	
	opens application to javafx.graphics, javafx.fxml;
	opens example_combobox to javafx.graphics, javafx.fxml;
}
8. [image:]Save and run. Now, ComboBoxExample.java should run properly as shown on the right.

[bookmark: _Toc155953044]Use Jar File with JavaFX Code
(Read, no action required). Jar files are like zip files for distributing Java code. We will explain these further in class. This section explains how to add a Jar file to a JavaFX project.
1. Download: mm.jar.
2. We are going to work with the samplegui project in your workspace (though we could use examplecombobox). Drag the jar file into the src node in the samplegui/src/application folder in the Package Explorer as shown below. Choose: Copy files and OK on the dialog that appears.
[image:]

3. Right-click the jar file in the Package Explorer and choose: Build Path, Add to build path. The file will “move” from the package folder to the Referenced Libraries folder as shown below.
[image:]
4. Open module-info.java and add this line: “requires mm;” Thus, the entire file might look like this:
module samplegui {
	requires javafx.controls;
	requires mm;
	
	opens application to javafx.graphics, javafx.fxml;
}
5. [image:]Expand mm.jar in the Referenced Libraries node. As shown on the right, for this example, the available classes are shown (GreenMartian, Martian, etc.), as well as the methods in each class and their signature (e.g. GreenMartian has a constructor that accepts an integer, and another that accepts 2 integers, etc.). In addition, it shows that these classes are in the application2 package, this will be important next.
6. To use any of the classes in the jar file, you must first import them Note that you must include the package (application2 for this example) in the path to the class. For example:
import application2.Martian;
import application2.GreenMartian;
import application2.*;

7. Finally, now you can just use these classes as you would any class:
Martian m = new RedMartian(3,3);
8. Verify that Main.java runs correctly. Nothing new is displayed, we are just verifying that the code still runs with the addition of the RedMartian code.
Note: Eclipse does give a warning:
Name of automatic module 'mm' is unstable, it is derived from the module's file name.
However, the code runs fine and accesses the Jar file.
[bookmark: _IntelliJ_JavaFX_Configuration][bookmark: _Toc155953045]IntelliJ JavaFX Configuration
If you did get Eclipse to work in Section 5 above, skip this section and move on to Section 7 – Submission. If you did not get Eclipse to work in Section 4 use these directions to download another IDE (IntelliJ) which will work.
These directions were NOT updated 7.27.2023, as the ones above were.
[bookmark: _Toc155953046]Install IntelliJ
To create Graphical User Interfaces (GUI) we will use the JavaFX libraries. This will involve 2 steps. The first is to install the E(fx)clipse plugin. When this is installed, it will allow the user to create a “JavaFX Project” which includes a sample GUI.
1. Navigate to: https://www.jetbrains.com/idea/ and choose: Download
2. Under the Community editions, use the dropdown to select your operating system (windows, mac, linux) and then choose: Download
[image:]
3. Run the installer.
4. A brief IntelliJ tutorial: https://courses.cs.washington.edu/courses/cse373/22su/projects/cse143review/intellij/

[bookmark: _Toc155953047]Create a JavaFX Application
1. Create a folder on your hard drive to store your IntelliJ work. I used: code_intellj
2. Run IntelliJ.
I’m not sure what happens the first time you run IntelliJ. After the first run, it opens in the last project you were working on. If there is an option for New Project, choose that. Otherwise, follow the directions below.
3. Do the following:
a. Choose: File, New Project.
b. As shown in the figure below
i. Select: JavaFX from the list on the left.
ii. Supply the Name: example_javafx
iii. For the Location, navigate to your folder created above (Warning, it may change the Name, if so, just type over it.
iv. Choose: Next, Finish
v. It may ask you to choose: This Window or New Window. Either is fine.
[image:]

4. Drill down in the Project Explorer as shown below.
[image:]
5. Open HelloApplication if it is not already. Do the following:
a. Notice the file is in a sub-sub-package: com.example.example_javafx
b. Run the application by pressing the green arrow beside: public class HelloApplication…
[image:]
c. Close the Gui that is displayed. This sample JavaFX GUI uses a more sophisticated approach than we will use: MVC and FXML. Next, we illustrate how to get started with our approach.

6. Open HelloApplication.java and replace the start method with:
public void start(Stage primaryStage) {
	try {
		GridPane grdPane = new GridPane();
		Label lblMsg = new Label("Hello World");
		grdPane.add(lblMsg, 0, 0);
		Scene scene = new Scene(grdPane,270,100);
		scene.getStylesheets().add(getClass().
				getResource("application.css").toExternalForm());
		primaryStage.setScene(scene);
		primaryStage.setTitle("Hello World 2");
		primaryStage.show();
	} catch(Exception e) {
		e.printStackTrace();
	}
}

7. Hover your mouse over GridPane which is colored Red (meaning it is not recognized). As the dialog shows, choose: Import class (or press: Alt+Shift+Enter), which adds this import. Verify that the import is added and that GridPane is no longer colored red.

import javafx.scene.layout.GridPane;

Do the same thing for Label. It will add this import:

import javafx.scene.control.Label;

8. [image:]If you run the class now, it will crash because it is looking for application.css in the code above. Next, we will create that file. Expand the resources node in the Project Explorer, as shown on the right, and drill down to the example_javafx folder.

9. [image:]As shown on the right, find the resources node in the Project Explorer and expand it. Then, right-click the example_javafx node and choose: New, File, and give it the name: application.css. The result is shown below:

10. Open application.css, add the code below and save:

.root {
	/*
	 * Padding around the border. Alternately
	 * -fx-padding: 10px, 10px, 10px, 10px
	 */
	-fx-padding: 10px;
}

GridPane {
	/*
	 * Spacing between nodes
	 */
	-fx-hgap:10px;
	-fx-vgap:10px;
}

11. Run HelloApplication. The result is shown below.

[image:]

12. The directions above are for creating a JavaFX program from Scratch.

[bookmark: _Use_Downloaded_Packages][bookmark: _Toc155953048]Use Downloaded Packages with JavaFX Code
This section shows how to setup and run a JavaFX Project that has been provided to you in a zip file. This technique is important so that you can run sample code I provide to you for examples, for a homework, or a project.
1. Download: lab1.zip and unzip somewhere. Once unzipped, you will find an example_combobox folder with 2 files inside.
[image:]
2. Copy (Ctrl+c) the example_combobox folder and paste (Ctrl+v) into example node (NOT example_javafx) in the project explorer. Choose: OK on the dialog that results. Note: if you drag the folder it will MOVE it (in contrast to Eclipse). The result is shown below.
[image:]
3. Open module-info.java (shown in the figure above) and add these lines:
opens com.example.example_combobox to javafx.fxml;
exports com.example.example_combobox;

4. Do the following:
a. [image:](Read, no action required) If you run ComboBoxExample now, It will crash. We need: (a) create an example_combobox folder in the resources/com/example folder, and then (b) copy application.css from the code location to this new folder.
b. Right-click the example folder (under: resources/com/) and choose: New, Directory. Type the name: example_combobox. This MUST be the same name as the package folder. The result is shown on the right.
c. Expand example_combobox (under: java/com/example). Cut (Ctrl+X) application.css from where the code is (see figure on the right) and paste into resources/com/example/example_combobox folder. The result is shown below.
[image:]
d. Run ComboBoxExample. It should display as shown below. It should be fully functional.
[image:]

[bookmark: _Toc155953049]Use Jar File with JavaFX Code
(Read, no action required). This section explains how to add a Jar file to a working JavaFX project. Suppose you have a Jar file named: mm.jar, do the following (You can actually do this if you want, or just read it. I’ve added this jar file on the Lab page):
1. Copy the jar file into the code folder (example_combobox) in the Project Explorer.
Note: you could copy it to: resources/com/example/example_combobox folder. Technically, that is probably a better location. However, I’ve already made the directions below, so we will stick with these.
[image:]
2. Choose: File, Project Structure.
3. Select: Modules from the left panel, and then select the Dependencies tab.
[image:]
4. Select the + icon and select: “1 JARs or Directories” (see figure above).

5. Drill down to find the jar file, select it, and choose: OK, and then OK again
[image:]
6. Open module-info.java and add this line: “requires mm;” Thus, the entire file might look like this:
module com.example.example_javafx {
 requires javafx.controls;
 requires javafx.fxml;
 requires mm;

 opens com.example.example_javafx to javafx.fxml;
 exports com.example.example_javafx;

 opens com.example.example_combobox to javafx.fxml;
 exports com.example.example_combobox;
}
7. Expand mm.jar and the classes are shown. Select a class and the signature of the methods in the class are shown. As shown on the below, for this example, the available classes are shown (GreenMartian, Martian, etc.), as well as the methods in each class and their signature (e.g. GreenMartian has a constructor that accepts an integer, and another that accepts 2 integers, etc.). In addition, it shows that these classes are in the application2 package, this will be important next.

[image:]

8. To use any of the classes in the jar file, you must first import them Note that you must include the package (application2 for this example) in the path to the class. For example:
import application2.Martian;
import application2.GreenMartian;
import application2.*;

9. Finally, now you can just use these classes as you would any class. For example, you can put this code at the end of the start method, run the program and observe the console.

Martian m = new RedMartian(3,3);
System.out.println(m);
[bookmark: _Submission][bookmark: _Toc155953050]Submission
1. If you succeeded with this Lab:
· Using Eclipse: make a screen shot of your Gui showing your name (see this Section).
· Using IntelliJ: make a screen shot of the ComboBox GUI (see this Section)

2. Submit on Blazeview in the appropriate dropbox.
3. If you did not succeed, do the following:
a. Make a screen shot of code showing the code, which will have red x’s in lots of places in the left margin.
b. Submit on Blazeview in the appropriate dropbox.
You are done!

	Appendix

[bookmark: ChangeJDKComplianceLevel][bookmark: _Toc155953051]Changing the JDK Compliance Level
Problem: Newer feature of Java does not compile. For example, attempting to use the inline casting, the error below is displayed. Selecting the “quick fix”, “Change project compliance…” has not worked for me and in fact completely ruins the whole project. When I’ve done this, I’ve had to create a new project and copy everything in.
[image:]
JRE System Library [JavaSE-20] (unbound)
Solution: To fix this, I changed the JDK compliance level using these instructions, which are also shown below. These instructions assume you have a new enough version of the JDK, but that it is not being used. So, you may have to install a newer version of the JDK.
1. Right-click the project in the Package Explorer and choose: Properties.
2. Choose from the left: Java Compiler.
3. Find, JDK Compliance at the top of the main display. Choose the level you want from the drop down. Note: you may have to uncheck the, Use compliance…on the ‘Java Build Path’.
4. Choose: Apply and Close
[bookmark: _Toc155953052]Change JRE
Problem: Same as Appendix 1 (trying to use a newer feature of Java that does not compile).
Summary: I believe this approach changes the build path. This needs more investigation to see how this differs and intersects with the approach in Appendix 1.
JRE System Library [JavaSE-20] (unbound)
To fix this, I used the latter part of these instructions:
https://www.codejava.net/ides/eclipse/change-java-compiler-version-for-eclipse-project
[image:]I’ll recreate them here:
1. Right-click the project and choose: Properties, Java Build Path, Libraries
2. Select: JRE System Library [JavaSE-1.8] and then choose: Edit
3. Select: Alternate JRE
4. Choose: Installed JREs…

5. [image:]Choose: Add…

6. [image:]Choose: Standard VM and then Next

7. [image:]Choose: Directory

8. [image:]Navigate to the folder where Java is installed and choose: Select Folder

9. [image:]Choose: Finish and then Apply and Close. (Figure below says, “The JRE name is already in use” because I have already done this)

10. [image:]Select as shown below and choose: Apply and Close

11. Mine still didn’t apply correctly so I checked this below:
[image:]

[bookmark: _Toc155953053]Old Resources
These are resources I have used in the past. I don’t think they are relevant any longer. They are preserved here for posterity.
1. JavaFX download: https://openjfx.io/ (home page), https://gluonhq.com/products/javafx/ (download page)
2. Video on configuring JavaFX with Eclipse 2021-06 manually. Doesn’t use the e(fx)clipse plugin. I couldn’t get it to work (8.12.2021).
https://www.youtube.com/watch?v=bk28ytggz7E
3. Video on configuring JavaFX with Eclipse. Uses the e(fx)clipse plugin. Doesn’t create a JavaFX project, but shows how do it manually. I couldn’t get it to work (8.12.2021).
https://www.youtube.com/watch?v=_GCje3q494o
4. This video that is almost identical to the Eclipse instructions above.
5. Notes from the person who helped me figure out the JavaFX libraries:
The program should now be free of all errors. It seems that JavaFX_XX MUST be in the modulepath for this to work. JavaFX SDK can be either Modulepath or Classpath without issue.
This solution currently only works on windows and linux for JavaSE-11 and Javafx-sdk-11.0.2
This solution also works on Windows for JavaSE-16 and Javafx-sdk-16, but does not work on linux
https://www.youtube.com/watch?v=bk28ytggz7E
This video is where I discovered the solution, the first comment in the comment section makes mention of swapping JavaFX from classpath to modulepath. There are a few other comments further down that make other mentions to a VM or setting up a module-info.java file in the source folder.
https://openjfx.io/openjfx-docs/#introduction
This page discusses setting up JavaFX as well. Click on JavaFX and Eclipse on the table of contents and it breaks it down by non-modular and modular installation across IDE, Maven, and Gradle. They mention solving one of the errors that will occur if you try to run the program with just the plug-in. I tested what JARs needed to be in the modulepath for the program and with a basic JavaFX project, the minimum JARs needed are: javafx.base / javafx.controls / javafx.fxml / javafx.graphics. These four should remove all errors for a default JavaFX project, but it seems safer and easier to just set up the project with all the JARs.

4

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.jpeg

image61.png

image62.png

image63.png

image1.png

image64.png

image65.png

image66.png

image67.png

image68.png

