CS 1302 – Lab 14

This is a tutorial on recursion. There are 5 stages to complete this lab:

	Stage
	Title
	Text Reference

	1
	Recursive Printing
	18.4

	2
	Variations on Recursive Printing
	18.4

	3
	Recursive Factorial
	18.2

	4
	Recursive Palindrome
	18.4

	5
	Helper Methods
	18.5

To make this document easier to read, it is recommend that you turn off spell checking in Word:

1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”

Stage 1 - Recursive Printing

In this stage we introduce the concept of recursion and then use recursion to repeatedly print a integers some number of times. The purpose of Stages 1 & 2 is to understand exactly how recursion works. We will work 3 or 4 variations of the same code to illustrate unwinding and winding (explained as we go along).

1. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\b1.jpg]Read (no action required) –

a. A recursive method is a method that calls itself. As shown on the right, the recursivePrint method calls itself.

If we call this method with:: recursivePrint(3); then: 3 2 1 is displayed. Study the code carefully to verify this. If you don’t see it, it is OK. We will be looking at the method in a lot more detail as we go along.

b. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\b5.jpg]To understand recursion it is helpful to understand the call stack. A call stack is a data structure that stores information about the active methods in a program. When a method is executing there is an active frame on the top of the stack. For example consider the hypothetical example in the figure on the right, main is executing and there is a local variable p with the value 7.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\b3.jpg]When a method calls another method, a frame for the method being called is pushed onto the stack and is now the active frame. For example, suppose main calls meth1, then the stack would be as shown on the right.

When a method finishes, its frame is popped from the stack and execution resumes in the calling method. For example, when meth1 finishes, main resumes with the values of its local variables found in the now active frame.

c. Now, consider the recursivePrint method from above. The figure below shows main calling recursivePrint with the value 2 (we’ve shortened the name of the method to recurPrint so that the figure will be slightly less wide). The figure shows exactly how the stack grows and shrinks as the code executes. Take your time and study the code below, carefully following the the numbered steps (purple arrows) below and the stack operations (dashed blue arrows)

1. recurPrint(2) is called, a frame is pushed onto the stack, and since , “2” is printed
2. recurPrint(1) is called, a frame is pushed onto the stack, and since , “1” is printed
3. recurPrint(0) is called, a frame is pushed onto the stack, and since , the method ends
4. As the method ends, the stack is popped and execution resumes in the caller (in this case the caller has no more code to execute).
5. Same as 4.
6. Same as 4.

[image: D:\eDataClasses\CS 1302 - Programming 2\notes_new\10_ch18_Recursion\a6.jpg]

Note:
· As the code executes through Steps 1-3, we say the code is winding (or recursing).
· When the code stops recursing, we say that we have hit a base case (or stopping rule). We’ll say more about this shortly.
· After the winding ends, the code is said to unwind.
· Winding is when the code is making recursive calls and the stack grows.
· Unwinding is when the recursion is finished and all the previously called methods finish their execution and the stack shrinks.

2. Do the following:

a. (Read, no action required) Next we will visualize what was illustrated in the diagram above by using a website that allows you to run code and visually displays the contents of the stack as the program is run.

b. Copy the code below:

public class RecursionExamples {

	public static void main(String[] args) {
		recursivePrint1(3);
	}

	private static void recursivePrint1(int n) {
		if(n > 0){
			System.out.print(n + " ");
			recursivePrint1(n-1);
		}
	}
}

c. Use a browser to navigate to: http://cscircles.cemc.uwaterloo.ca/java_visualize/

d. Replace the code in the window with the code copied above.

e. Choose: “Visualize execution”.

f. Press “Forward” once and you will be on Step 2 as shown in the figure below. Note the following:

· The call stack is shown under heading, “Frames.”
· The top frame shows the method currently being executed and that the method is halted on line 4 (thus, the next line to be executed is line 4)

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\c1.jpg]

g. Press “Forward” once and you will be on Step 3 as shown in the figure below. Note the following:

· The call to recursivePrint1 pushed a frame on to the stack. Thus, the Active Frame shows that recursivePrint1 is now executing, halted at line 8 and that n has the value 3.

· The Inactive Frame shows that recursivePrint1 was called from line 4 in main.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\c2.jpg]

h. Press “Forward” three times until you get to Step 6. When you press “Forward” again (wait until next step), you will be recursively calling recursivePrint1.

i. Press “Forward” one time (now on Step 7) and note the following:

· There is a new active frame showing that another instance of recursivePrint1 has been called, that we are halted on line 8 and n has the value 2
· The inactive frame immediately below represents the previous instance of recursivePrint1. Note that this instance has not finished. Eventually, we will return to this instance and finish the method starting at line 10 and n will have the value 3. Of course, there is no more code to execute in the method when we return, however sometimes there will be. The important point is that this instance has not finished executing.

j. Press “Forward” three times (now on Step 10). Now, press “Forward” one more time which invokes another recursive call. Note exactly what we noted in i above, except that n is now 1 in the active frame.

k. Press “Forward” three times (now on Step 14). Now, press “Forward” one more time which invokes another recursive call. Note exactly what we noted in i above, except that n is now 0 in the active frame.

l. Before pressing “Forward” again, notice that the current value of n is 0 and that the if statement we are about to execute will evaluate to false. Thus, the current instance of the method will end. Do the following:

· Press “Forward” once (now on Step 16). The yellow highlight has not moved, however, this step just evaluated the conditional in the if statement.
· Press “Forward” once (now on Step 17). The yellow highlight is on the closing brace for the method.

m. Press “Forward” once (now on Step 18). The method is just about to finish. Notice the active record now shows the return value (which is void).

n. When (please wait) you press “Forward”, the following will happen:

· The stack will be popped indicating that the current instance of the method has ended.
· The top inactive frame will become active.
· The top inactive frame indicates that you will return to line 10 in that instance of the method. However, that line will then be completed, so the method will be over and the highlight will move to the closing brace (line 12).

Press “Forward” once (now on Step 19). Note the following:

· The yellow highlight is on the closing brace for the method.
· The current instance of the method is about to finish.

o. Press “Forward” once (now on Step 20). Observe that the stack was popped as described above and that n is now 2.

p. Press “Forward” once (now on Step 21). Observe that the stack was popped as described above and that n is now 3.

q. Press “Forward” once (now on Step 22). Observe that control has now returned to main.

r. Press “Forward” once (maybe twice?). Observe that program ends.

3. Choose “First” and then repeat step 2 of these instructions. Think carefully about the observations I made about the code.

4. (Read, no action required) Note the following about executing this code:

· In Steps 1-15 in the simulator we are recursing (also called winding). When recursing, the stack grows.
· In Steps 16-22 we are unwinding from the recursion and the stack shrinks.
· The printing that occurred took place during the winding. In Stage 2 below, we will consider a variation of this example where the printing takes place during the unwinding.

Stage 2 - Variations on Recursive Printing

5. Setup – Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.
b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use.
c. Create a Project – Create a Java project with the name, lab08_lastNameFirstInitial, e.g. lab08_gibsond.
d. Create a package named recursion_examples.

6. Run Example

a. Create a class named PrintExamples (in the recursion_examples package) and replace everything in the class (except the package statement at the top) with:

public class PrintExamples {

	public static void main(String[] args) {
		recursivePrint1(3);
		System.out.println();
	}

	private static void recursivePrint1(int n) {
		if(n > 0){
			System.out.print(n + " ");
			recursivePrint1(n-1);
		}
	}
}

b. Study the code carefully (it is the same as we have looked at so far). Run and verify the output.

c. Next, we create a variation of recursivePrint1 by moving the print statement to after the recursive call. Add this method to the PrintExamples class:

	private static void recursivePrint2(int n) {
		if(n > 0){
			recursivePrint2(n-1);
			System.out.print(n + " ");
		}
	}

d. Add these lines to the end of main, run, and verify the output

recursivePrint2(3);
System.out.println();

Do you understand why the output is: 1 2 3? If not, we will examine this method in the Visualizer next.

7. Run Visualizer on recursivePrint2

a. Copy the code below (this is the same code as above, but recursivePrint1 has been removed):

public class PrintExamples {

	public static void main(String[] args) {
		recursivePrint2(3);
		System.out.println();
	}

	private static void recursivePrint2(int n) {
		if(n > 0){
			recursivePrint2(n-1);
			System.out.print(n + " ");
		}
	}
}

b. Use a browser to navigate to: http://cscircles.cemc.uwaterloo.ca/java_visualize/

c. Replace the code in the window with the code copied above.

d. Press “Forward” slowly, watching the path of execution and the stack grow until you get to Step 13. Note the following:

· The recursing (winding) is about to end because n is 0 and so we will not enter the if block.
· No printing has taken place.

e. Press “Forward” slowly, watching the path of execution and the stack shrink until the program ends. Note that the printing took place during the unwinding.

8. Run Example

a. On the left below we show recursivePrint2 which we just considered. Now, we consider the method, recursivePrint3 on the right, below which looks very similar to recursivePrint2. They both make a recursive call using with the value n-1. However, there is one major difference: recursivePrint3 changes the value of n in the method (the highlighted line on the right), recursivePrint2 does not. The result is that different values will be printed for each method.

	
	

	private static void recursivePrint2(int n) {
	if(n > 0){
		recursivePrint2(n-1);
		System.out.print(n + " ");
	}
}
	private static void recursivePrint3(int n) {
	if(n > 0){
		n--;
		recursivePrint3(n);
		System.out.print(n + " ");
	}
}

b. Copy recursivePrint3 above on the right to PrintExamples.

c. Add these two lines to the end of main:

recursivePrint3(3);
System.out.println();

d. Run, and verify the output.

9. Run Visualizer on recursivePrint3

a. Copy the code below (this is the same code as above, but recursivePrint1 and 2 have been removed):

public class PrintExamples {

	public static void main(String[] args) {
		recursivePrint3(3);
		System.out.println();
	}

	private static void recursivePrint3(int n) {
		if(n > 0){
n--;
			recursivePrint3(n);
			System.out.print(n + " ");
		}
	}
}

b. Use a browser to navigate to: http://cscircles.cemc.uwaterloo.ca/java_visualize/

c. Replace the code in the window with the code copied above.

d. Choose: “Visualize execution” and then “Forward” to step through the code. Note:

· From step 5 to 6, n’s value changes to 2.
· At step 18, the last recursive call is about to end.
· As you step to 19, the stack is popped
· As you step to 20, the current value of n (0) is printed.
· Etc.

Stage 3 - Recursive Factorial

In this stage we consider an example of recursion where the recursive method returns a value.

10. Read (no action required) –

	Examples:
 by definition

a. In mathematics, the concept of factorial is defined: the factorial of an integer is the product of that integer and all the positive integers smaller than it. Examples are shown on the right.

	Example:

b. The recursive definition of factorial is:

 where for

The figure on the right shows an example.

c. A recursive method to computer factorial:

private static long factorial(long n) {
return n * factorial(n-1);
}

Study this method carefully. It has a big problem – the recursion continues forever (or until the computer runs out of memory)! A recursive method must have a stopping condition (also called a base case). For the factorial problem, we use the fact that factorial is only defined for and that by definition, . This is our base case. Thus, a correct recursive solution to the factorial problem is:

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d1.jpg]

Notice also that this recursive method returns a value (an int). We will explore that more as we move along.

d. Let’s take a close look at what happens when factorial(3) is called.

· The red arrows indicate that the execution is winding (also called recursing) which is used to describe the process of a recursive method calling itself repeatedly.
· The green arrows indicate that the execution is unwinding, which refers to the process of one method ending and returning to the method that called it.
· The returned values are also shown (green) as each method ends.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\08_ch18_Recursion\a4.jpg]

e. Consider recursivePrint1 which we considered earlier (shown below). It doesn’t appear to have a stopping condition.

private static void recursivePrint1(int n) {
	if(n > 0){
		System.out.print(n + " ");
		recursivePrint1(n-1);
	}
}

It actually does have a stopping condition, it is just subtle (implicit). We see that every recursive call reduces n by 1. What happens when n=0? The method simply ends. So, we could have written recursivePrint1 as shown below and it would operate identically.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d2.jpg]

11. Read (no action required) – All recursive methods have the following characteristics:

a. An if/else or switch statement that leads to different cases.
b. One or more simple cases, called base cases, that can be solved without a recursive call. In other words they end the recursion. Thus, sometimes we refer to these as stopping conditions.
c. Every recursive call creates a smaller version of exactly the same problem bringing it increasingly closer to a base case until it becomes that base case (stopping the recursion). For example, in the factorial problem, factorial(n-1) is a smaller version of exactly the same initial problem: factorial(n)

public static int factorial(int n) {
	if(n==0)
		return 1;
	else
		return n*factorial(n-1);
}

12. Run Example

a. Create a class named FactorialExample and replace everything in the class (except the package statement at the top) with:

public class FactorialExample {

	public static void main(String[] args) {
		int x = 5;
		System.out.println(factorial(x));
	}

	public static int factorial(int n) {
		return n*factorial(n-1);
	}
}

Note that this version does not have a stopping condition. We are going to run it and see what happens.

b. Run this example and observe that a StackOverflowError occurs. You will need to scroll to the very top of console window to see the error:

Exception in thread "main" java.lang.StackOverflowError

13. Run in Visualizer – Copy the class immediately above into the visualizer. Step through the code and observe the stack get larger and larger. Eventually, n becomes negative. And even further, it says the the instruction limit has been reached.

14. Run Correct Factorial Example

a. Now, let’s fix the factorial method in your code in Eclipse. Replace the incorrect one with the one below.

public static int factorial(int n) {
	if(n==0)
		return 1;
	else
		return n*factorial(n-1);
}

b. Run this example and observe the result of 120.

c. Run a few more times changing the value that it is called with in main. Try 15, 20, 25, 30. Eventually the result will become negative or 0. This means that the answer is bigger than will fit in an int. Of course we can change int to long. When I did this I could get up to about n=55 before it overflowed.

15. Run Visualizer on recursivePrint3

a. Copy the factorial code below (this is the same code as above):

public class FactorialExample {

	public static void main(String[] args) {
		int x = 3;
		System.out.println(factorial(x));
	}

	public static long factorial(int n) {
		if(n==0)
			return 1;
		else
			return n*factorial(n-1);
	}
}

b. Use a browser to navigate to: http://cscircles.cemc.uwaterloo.ca/java_visualize/

c. Replace the code in the window with the code copied above.

d. Choose: “Visualize execution” and then “Forward” to step through the code. Note:

	Step
	Note

	1-14
	Recursively calling factorial, the stack grows

	15
	The base case is found, recursion stops

	16
	The return value of 1 is about to be returned

	17
	The stack has been popped, recursion is unwinding

	18
	The return value of 1*1=1 is about to be returned

	19
	The stack has been popped

	20
	The return value of 2*1=2 is about to be returned

	21
	The stack has been poped

	22
	The return value of 3*2=6 is about to be returned

	23
	The unwinding of the recursion is finished, main is active

16. View Call Stack in Eclipse

a. (Read, no action required) We can also visualize the call stack in Eclipse, though the display is a bit more cryptic.

b. Change x=5 to x=3 on the first line in main in FacorialExample.

c. Set a breakpoint on the line below in the factorial method (at or near line 11):

if(n==0)

d. Run the debugger (Run, Debug). Execution will halt at the location shown below. Note the call stack and the variable in the active frame.

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d3.jpg]

e. Choose: Run, Step Into (F5) six times and watch the call stack grow.

f. Select an inactive frame (one of the lower frames) in the call stack and notice that it shows:

· where you left off when that frame was last active (highlighted green in the code)
· the variables (and values) that were active at that time.

g. Reselect the top (active) frame and press F5 until the program ends, watching the call stack be popped along the way.

h. Return to the Java perspective (button in upper right)

Stage 4 - Recursive Palindrome

In this stage we consider solving the palindrome problem recursively.

17. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d4.jpg]Read (no action required) – A string is considered a palindrome if it reads the same forwards and backwards. Consider a method, isPalindrome that accepts a string and returns true if the string is a palindrome and false otherwise. An idea for a recursive algorithm to solve the problem is shown on the right. We can express this algorithm (which is not quite correct, we are missing the stopping condition):

isPalindrome(s)
if first and last characters are different
return false
else
	remove first and last characters from s
return isPalindrone(s)

For example, suppose we make the call:

isPalindrome(“wobow”)

As the code executes, we make these recursive calls

isPalindrome(“obo”)
isPalindrome(“b”)

As we can see the last call should return true because “b” is a palindrome. Thus, the stopping condition we will use is:

if(s.length() <= 1) return true;

18. Run Example

a. Create a class named PalindromeExample and replace everything in the class (except the package statement at the top) with:

public class PalindromeExample {

	public static void main(String[] args) {
		String s = "dened";
		System.out.println(isPalindrome(s));
	}

	public static boolean isPalindrome(String s) {
		if(s.length() <= 1)
			return true;
		else if(s.charAt(0) != s.charAt(s.length()-1))
			return false;
		else
			return isPalindrome(s.substring(1,s.length()-1));
	}
}
b. Run this example and verify the output. Note that the initial string, “dened”, has a length which is odd.

c. Change the initial string to: “abba” (note that string length is even), re-run and verify the output.

d. Change the initial string to: “abcca”, re-run and verify the output.

19. Copy the code above and run in the visualizer. Notice that as the stack grows each frame contains shorter and shorter versions of the initial string. This is important to notice as we will be contrasting this in Stage 5.

20. Choose “Edit Code” and then select the “options” that says “Show String/Integer/etc objects, not just value”. Run the visualizer again. Objects are not stored on the stack, but the stack has pointers to them. This is important to notice as we will be considering this again in Stage 5.

Stage 5 - Helper Methods

In this stage we consider the use of recursive helper methods.

21. [image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d7.jpg]Read (no action required) –

a. The isPalindrome method we wrote earlier is not efficient. It creates a new (smaller) string every time we make a recursive call. Thus, as the stack grows, more and more strings are being held in memory.

b. Consider another approach, as shown on the right where we pass the same (complete) string every time, but we also include two additional parameters that specify which two characters we are focusing on. At each iteration, we will increment by 1 the index pointing to the first character and decrement by 1 the index pointing to the last character.

c. Thus, an algorithm is:

isPalindrome(s, first, last)
if first >= last
return true
else if(s.charAt(first) != s.charAt(last))
return false
else
return isPalindrone(s, first+1, last-1)

Thus, the initial call to this method would be:

isPalindrome(s, 0, s.length()-1)
d. If someone really needed an isPalindrome method, of course the user would be expected to supply the string they want to validate. But, would we really require them to also supply the values for the first and last parameters? That is overly burdensome when we can easily calculate those values ourselves once we have the string. Thus, instead of requiring a user to call the method above, we make it easier by letting them call this method:

public static boolean isPalindrome(String s) {
	int first = 0;
	int last = s.length()-1;
	return isPalindrome(s,first,last);
}

Note:
· This method is not recursive.
· It sets up and calls the recursive method, which we call a recursive helper method and we set its visibility to private so that we force clients (users) to use the public method above:

private static boolean isPalindrome(String s, int first, int last) {
	if(first>=last) // base case
		return true;
	else if(s.charAt(first) != s.charAt(last)) // base case
		return false;
	else
		return isPalindrome(s,first+1,last-1);
}

e. Several notes:

· We can solve a lot more problems recursively when we “introduce” parameters. We will see the later, either in this lab or in the notes.
· Can’t remember the other point I had

22. Run Example

a. Create a class named HelperMethod and replace everything in the class (except the package statement at the top) with:

public class HelperMethod {

	public static void main(String[] args)
	{
		String msg = "sutus";
		System.out.println(msg + " is palindrone=" + isPalindrone(msg));
	}

	public static boolean isPalindrone(String msg)
	{
		return isPalindrone(msg, 0, msg.length()-1);
	}

	private static boolean isPalindrone(String msg, int first, int last)
	{
		if(first >= last)
			return true;
		if(msg.charAt(first) != msg.charAt(last))
			return false;
		else
			return isPalindrone(msg, first+1, last-1);
	}
}

b. Run this example and verify the output.

c. Experiment with different values and re-run.

e. Do the following:

i. Copy the class (HelperMethod) immediately above.

ii. Go to the Visualizer: http://cscircles.cemc.uwaterloo.ca/java_visualize/ and choose “options” and check the box to “Show String…objects, not just values.”

iii. Paste the code into the Visualizer and “Forward” through the code. Verify that the stack is similar to what is shown below. Notice that each frame is pointing to the one copy of the string in memory (remember, a String is an object and is not passed by value)

[image: E:\Data-Classes\CS 1302 - Programming 2-Fall 2016\notes\07_ch18_Recursion\d8.jpg]

Submission

1. Do the following

a. Zip all the folders (packages) under the src folder into a zip file named: lab14_lastname.zip
b. [bookmark: _GoBack]Upload your zip file to the lab14 dropbox in Blazeview.

You are done!
1

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image1.jpeg

image2.jpeg

