Lab 3 – Objects & Classes

Contents
1	A Basic Class	1
2	Formal Testing	8
3	Using this to Differentiate between Instance Variables and Parameters	11
4	Using this with Multiple Constructors	12
5	Passing Objects to Methods	15
6	Arrays of Objects	16
7	Submission	19
	
To make this document easier to read, it is recommended that you turn off spell checking and grammar checking in Word:
1. Choose: File, Option, Proofing
2. At the very bottom, check: “Hide spelling errors…” and “Hide grammar errors…”
[bookmark: _Toc111023281]A Basic Class
In this stage we study a one-to-one association between classes.

1. (Read, no action required)

a. In computing, a class:

· Is a way to group together related data and methods. Data is also called: state or instance variables. Methods are also called behaviors.
· Has the data inside it.
· Has methods inside it that do something with the data (getName returns the name of the person, getBMI calculates and returns the BMI, etc.)
· Represents a real-world object (entity, thing) in the problem domain; thus, it is usually a noun.

b. [image:]Example – Consider the situation where we need represent the features of a checking account for a system we are writing for a bank. For a simple case, we might represent the account number, owner, and balance as shown on he right. The things we might want to do with the data are the methods shown on the right. We could model the data as variables in a program, and we could write the methods. However, a better approach is to write a class to represent an account and put all the variables and methods inside it. This approach is almost literally, just putting a box around the related data and methods. It is a way to organize the code. We see how to write this class shortly.

c. [image:]Before we consider how to write the Account class, let’s consider how we use the Account class. Consider a simpler version of the Account class above, as shown on the right. We could use this class by creating and using an Account object with code like this:

	Code
	Description

	Account a1 = new Account();
	We use a constructor preceded by the new keyword to create an object (a1)

	a1.deposit(1000.0);
	We use the object to call the deposit method, passing in 1000. This will set the internal balance to have this value.

	System.out.println("Balance=$" + a1.getBalance());
	Later, we can use the object to call the getBalance method to return the value of the balance that is inside the class

	Account a2 = new Account();
a2.deposit(500.0);
	We can create as many objects as we need. In this case we create a new Account object, a2.

d. Object-oriented programming (OOP) is: (1) creating and writing our own classes (often called custom or domain classes) and (2) writing code that uses these classes to solve problems.

2. Do the following:

a. Establish a Workspace – Create a folder on your drive where you will put your lab or use an existing one.

b. Run Eclipse – As the program begins to run, it will ask you to navigate to the Workspace you want to use, which is the folder above.

c. Create a Project – Do the following:

i. Choose: File, New, Java Project.
ii. Supply a project name, lab03_lastName, e.g. lab03_gibson
iii. Choose: Finish

3. Add the Account Class

a. Choose: File, New, Class
b. Set the Package to “ver1”
c. Set the Name to “Account”
d. Choose: Finish

e. Replace everything in the Account class except the package statement at the top.

public class Account {
	// Instance variable, only available inside this class.
	private double balance;

	// A "getter" method that simply returns the balance.
	public double getBalance() {
		return balance;
	}
	
// A method that increases the balance by amount
public void deposit(double amount) {
	if(amount>0) {
		balance += amount;
	}
}
	
	// Informal test code
	public static void main(String[] args) {
		Account a1 = new Account();
		a1.setBalance(1000.00);
		System.out.println("Balance=$" + a1.getBalance());
	}
}

f. Study the code above. Note:

· The instance variable is declared private which means it can only be used inside this class. For example, the instance variable, balance is used in the deposit method.

public void deposit(double amount) {
	if(amount>0) {
		balance += amount;
	}
}

· If an instance variable needs to be available in another class, we define a getter (also called an accessor) which is simply a method to return the value of the instance variable (it can do other things if needed). For example:

public double getBalance() {
	return balance;
}

Allows us to access the balance in main:

	public static void main(String[] args) {
		Account a1 = new Account();
		a1.setBalance(1000.00);
		System.out.println("Balance=$" + a1.getBalance());
	}

Most instance variables will have a getter.

· As shown directly above in main, we use the dot operator to invoke (call) a method. In general: object.method(arguments).

· If we need to be able to change the value of an instance variable, we define a setter (also called a mutator) which accepts a new value (newBal) and assigns it to the instance variable (balance). A setter doesn’t typically return anything, so the return is void. For example:

public void setBalance(double newBal) {
	if(newBal>0.0) {
		balance = newBal;
	}
}

In the Account class we wrote above, we didn’t define a setter for the balance. The reason is that we probably don’t need one. We probably only want to change the balance when we deposit (or when we withdraw, or applyInterest, or assessOverdraftFees, etc, which would probably be useful methods in the Account class. However, we haven’t written them yet.)

· The methods are declared public so that they can be used outside the class, in other classes, for example in main.

· None of the instance variables nor methods are static. We will almost never use the static modifier in classes we write.

g. Run the code (choose: Run, Run or press the Green arrow icon) and observe the output.

4. (Read, no action required). Every class has a constructor. A constructor is used to create an object (also called an instance) from the class. A class is static, it is a blueprint for creating objects. An object (instance) is a real, live object in memory as your program runs. Almost always, a class will explicitly define a constructor. A constructor’s job is to initialize the instance variables. In the code above, we did not explicitly define a constructor; however, there is default constructor (we discuss this in class). All classes we develop moving forward will have an explicit constructor. For example, we add this constructor to the Account class:

// Constructor
public Account(double initBalance) {
	balance = initBalance;
}

Which allows us to create an Account object by supplying an initial balalnce:

Account a2 = new Account(1000.0);

5. Do the following:

a. Add this constructor to Account class. Best practice says that it should be placed immediately below the instance variables:

// Constructor
public Account(double initBalance) {
	balance = initBalance;
}

For example, the code will look like this:

public class Account {
	// Instance variable, only available inside this class.
	private double balance;

	// Constructor
	public Account(double initBalance) {
		balance = initBalance;
	}
	...
}

b. Scroll down to main and you will see that there is a compile error. The problem is that as soon as you define an explicit constructor, the default constructor is longer available (again, this will be explained in class). Replace the code in main with:

Account a1 = new Account(1000.0);
System.out.println("Balance=$" + a1.getBalance());
a1.deposit(500.0);
System.out.println("Balance=$" + a1.getBalance());

c. Run and observe the output.

6. We might also like the Account class to have a withdraw(amount) method. Do the following

a. Add this method to the Account class. It should be placed immediately below the deposit method:

// Decreases the balance by amount
public void withdraw(double amount) {
	if(amount>0) {
		balance -= amount;
	}
}

b. Add this code to the end of main:

a1.withdraw(200.0);
System.out.println("Balance=$" + a1.getBalance());

c. Run and observe the output.

7. (Read, no action required). Every class should have a toString method. The signature must be:

public String toString()

The toString method should return a string representation of the object. In other words, a descriptive string showing the values of the instance variables. If the class has methods that take no arguments and return a value, they should be executed in toString also. Displaying the result of the toString method is useful for debugging and testing. For example, for the Account class:

@Override
public String toString() {
	return "balance=" + balance;
}

Technically, we are overriding the toString method which we will discuss in Chapter 11. The “@Override” is called an annotation. It is not required, but is a best practice.

8. Do the following

a. Add this method to the Account class. It is usually placed next-to-last, just above the main method, or last if there is no main.

@Override
public String toString() {
	String msg = "balance=$" + balance;
	return msg;
}

b. Add this code to the end of main:

System.out.println(a1.toString());
System.out.println(a1);

Note:
· Each of these lines of code is referred to as, “printing an object”, in this case, a1.
· Each of these two lines produces the same output. By default, when you print an object (2nd line), it automatically calls the toString method. The second line is preferred as it is simpler.

c. Run and observe the output. Notice that the second print produces the same output as the first.

9. Use the debugger to step through the code. Your goal is to understand exactly what happens when main is executed, but inside the class. Do the following:

a. Add a breakpoint on the highlighted line as shown below:

Reminder: To add a breakpoint, put your cursor on the line of code above and then double-click in the blue bar in the left margin. A small circle will appear.

public static void main(String[] args) {
	Account a1 = new Account(1000.0);
	System.out.println("Balance=$" + a1.getBalance());
	a1.deposit(500.0);
	System.out.println("Balance=$" + a1.getBalance());
	
	a1.withdraw(200.0);
	System.out.println("Balance=$" + a1.getBalance());
	
	System.out.println(a1.toString());
	System.out.println(a1);
}

b. Choose: Run, Debug. Execution should be halted at the line shown below in the Account class.

[image:]

c. Hover your mouse over a1 and observe the value shown.

d. Go to the Variables window (upper right, or choose: Window, Show View, Variables), expand a1, and observe the value shown.

e. Next, we step into this method. Choose: Run, Step Into (or press F5)

[image:]

f. Hover your mouse over balance and amount and observe the values shown.

g. Go to the Variables window.

· Note that amount is shown, but not balance. This is because amount is a local variable and balance is an instance variable which is inside the object, a1.
· We do not see a1, but we do see this. Expand the this node. There, you see balance. Note that the code being executed is inside the a1 object. This can be a bit confusing, but when we are inside an object, we use the Java keyword this to refer to our self. When we are outside the object (in main, step b above) we refer to it with its name, a1. We will discuss this more in this lab, and also in class.

h. Press F5 twice. Observe the change in values via hovering and the Variables window.

i. Press F5 once. You should be back in main:

[image:]

j. Press F5 once. You should be in the getBalance method.

[image:]
k. Continue to inspect the variables, and step through the code one line at a time. It usually gets confusing when you get to the very end of main, after all the code has been executed. It kind of looks like it has bombed: it says, “Source not found”. Sometimes, if you continue to press F5 (or F6) it will eventually end. Or (and to make sure), to end the debugging, just choose: Run, Terminate.

l. Repeat steps a-k again. i.e. step through main again, slowly, following the value and change of values. When you are done remember to switch back to Java perspective (icon in upper-right, when hovered over says, “Java”).
[bookmark: _Toc111023282]Formal Testing
In this Stage we discuss formal testing

10. (Read, no action required)

· As we write code, we frequently do informal testing. For example, the code we wrote in main is informal test code.
· However, for formal testing, we write a separate class. The convention is that if we are testing a class named Foo, then the test class is named FooTest. Thus, for the Account class, we write the AccountTest class. In this class, we: (1) write test methods that test each method in our class under varying conditions, (2) write a main that calls these test methods. We say more about this after we write the AccountTest class. For example:

public class AccountTest {
	public static void main(String[] args) {
		// Execute test methods
		testAccountCreation();
		testToString();
		testDeposit();
		testMultipleDeposits();		
		...		
	}
	// Test methods
	private static void testAccountCreation() {...}
	private static void testToString() {...}
	private static void testDeposit() {...}
	private static void testDepositWithNegativeAmount() {...}
	...
}

11. Do the following:

a. Create a class named: AccountTest in the ver1 package.
b. Replace everything in the AccountTest class except the package statement at the top with:

public class AccountTest {
	public static void main(String[] args) {
		// Execute test methods
		testAccountCreation();
		testToString();
		testDeposit();
		testMultipleDeposits();		
		testDepositWithNegativeAmount();
		testWithdraw();
		testMultipleDepositsAndWithdrawals();		
		testWithdrawWithNegativeAmount();
	}
	
	/*
	 * Test methods
	 */
	private static void testAccountCreation() {
		System.out.println("-->testAccountCreation()");
		Account a1 = new Account(1000.0);
		System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	}

	private static void testToString() {
		System.out.println("-->testToString()");
		Account a1 = new Account(1000.0);
		System.out.println("toString()=" + a1);
	}

	private static void testDeposit() {
		System.out.println("-->testDeposit()");
		Account a1 = new Account(1000.0);
		a1.deposit(500.0);
		System.out.println("balance should be $1500, balance=$" + a1.getBalance());
	}

	private static void testDepositWithNegativeAmount() {
		System.out.println("-->testDepositWithNegativeAmount()");
		Account a1 = new Account(1000.0);
		a1.deposit(-500.0);
		System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	}

	private static void testMultipleDeposits() {
		System.out.println("-->testMultipleDeposits()");
		Account a1 = new Account(1000.0);
		a1.deposit(500.0);
		a1.deposit(300.0);
		System.out.println("balance should be $1800, balance=$" + a1.getBalance());
	}

	private static void testWithdraw() {
		System.out.println("-->testWithdraw()");
		Account a1 = new Account(1000.0);
		a1.withdraw(600.0);
		System.out.println("balance should be $400, balance=$" + a1.getBalance());
	}

	private static void testWithdrawWithNegativeAmount() {
		System.out.println("-->testWithdrawWithNegativeAmount()");
		Account a1 = new Account(1000.0);
		a1.withdraw(-500.0);
		System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	}

	private static void testMultipleDepositsAndWithdrawals() {
		System.out.println("-->testMultipleDepositsAndWithdrawals()");
		Account a1 = new Account(1000.0);
		a1.deposit(500.0);
		a1.withdraw(200.0);
		a1.deposit(400.0);
		a1.withdraw(1000.0);
		System.out.println("balance should be $700, balance=$" + a1.getBalance());
	}
}

c. Run the AccountTest class and verify the output.
d. Study the code and note the following:

· We write static test methods which we call from main.
· Each test method has a name, prefaced by “test” and followed by a description of the test.
· Each test method has descriptive output that shows the expected and actual output. For example:

		System.out.println("balance should be $1500, balance=$" + a1.getBalance());

· Some methods are tested several times, under varying conditions. For example, deposit is tested when it is sent a positive amount, testDeposit. It is also tested with a negative input, testDepositWithNegativeAmount.
· Each test is stand-alone. This means that no test depends on any other tests. Thus, the tests are independent.
· Another example, is we test multiple deposits in a separate test method, testMultipleDeposits.
· The test methods are usually ordered so that the most critical tests are earlier. For example, if testAccountCreation fails, then the other tests below it are not relevant. In other words, we must fix the account creation before we can test the deposit method.

12. Close Account and AccountTest.

[bookmark: _Toc111023283]Using this to Differentiate between Instance Variables and Parameters
In the next few stages we make some enhancement to the Account class in order to illustrate some other features of classes.

13. (Read, no action required) The this keyword can be used inside a class to refer to itself. One use of this is a way to differentiate between an instance variable and a parameter with the same name. Earlier, we wrote the Account constructor:

public Account(double initBalance) {
	balance = initBalance;
}

Frequently, we name the constructor parameters using the same name as the corresponding instance variables as shown below:

public Account(double balance) {
	balance = balance;
}

This code compiles and runs; however, it is a mistake. The code has no affect: it simply assigns the local variable (parameter) balance to the local variable (parameter) balance. It does not initialize the instance variable. The parameter, balance is a local variable, thus, it hides the instance variable.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\b4.jpg]The correct way to write this is shown on the right. There, we use this.balance to refer to the instance variable in this object, while balance is the parameter.
14. Copy the ver1 package and paste it into src giving it the name, ver2 (we do this simply to leave the work we have done so far as complete and working, an incremental backup). If you need more explicit directions, do the following:

a. Select the ver1 package in the Package Explorer
b. Choose: Edit, Copy (or Ctrl+C)
c. Select the src node in the Package Explorer
d. Choose: Edit, Paste (or Ctrl+V)
e. Change the name to ver2 and press: OK.

15. Do the following:

a. Open the Account class that is in the ver2 package.
b. Replace the constructor with:

// Constructor
public Account(double balance) {
	this.balance = balance;
}

c. Open the AccountTest class in the ver2 package and run it. Verify that the output is correct.
[bookmark: _Toc111023284]Using this with Multiple Constructors
16. (Read, no action required)

a. A class can any number of constructors. Frequently, a class will have several. As we write classes, we want to provide flexibility for the people using our classes. We want our classes to be easy to use.

b. [bookmark: _Hlk46146209]For example, suppose we want to write a Person class that has a name and age. A person can be created (constructors) in three ways, by supplying:

· [bookmark: _Hlk46146244]A name and an age: public Person(String name, int age)
· A name only: public Person(String name), in which case the age is set to 0.
· No arguments: public Person(), in which case the name is set to ”Unknown”, and the age is set to 0.

c. Another use of this is to have one constructor call another constructor using this. As shown below, we have one main constructor that accepts the name and age and the other two constructors call this constructor.

[image: G:\eDataClasses\CS 1302 - Programming 2\notes\02_ch9_Object&Classes\c4.jpg]

Notes:
· The statement: this(argList) calls the constructor with the matching argument list. Thus, you can’t have two constructors with the same signature.
· this must be the first statement in the constructor, though it can be followed by additional code.
· We call this constructor chaining.

d. Best practice is to try to write one “main” constructor and have the other constructors call this one as shown above. However, it is not always possible, efficient, or understandable.

e. For the example above, the code below is legal and works correctly, but is not a best practice and should not be used:

	public Person() {
 this.name = "Unknown";
 this.age = 0;
}
	public Person(String name) {
 this.name = name;
 this.age = 0;
}
	public Person(String name, int age) {
 this.name = name;
 this.age = age;
}

17. Next, we will add a name instance variable to the Account class (in the ver2 package) and then add some additional constructors. Do the following:

a. Add this instance variable to the Account class:

private String name;

It should be just below the balance instance variable:

public class Account {
	// Instance variable, only available inside this class.
	private double balance;
	private String name;
...

b. Add a getter and setter for the name instance variable. These should be placed below the getBalance method (getter):

public String getName() {
	return name;
}

public void setName(String name) {
	this.name = name;
}

c. Modify the toString method so that it includes the name as shown below:

@Override
public String toString() {
	String msg = "name=" + name + ", balance=$" + balance;
	return msg;
}

d. Add this new constructor just below the existing one:

public Account(String name, double balance) {
	this.name = name;
	this.balance = balance;
}

e. Modify the original constructor:

public Account(double balance) {
	this.balance = balance;
}

So it looks as shown below:

public Account(double balance) {
	this("Unknown", balance);
}

18. Next, we add some test methods. Do the following:

a. Open AccountTest (in the ver2 package) and add these test methods:

private static void testAccountCreationWithNameAndBalance() {
	System.out.println("-->testAccountCreationWithNameAndBalance()");
	Account a1 = new Account("Ceasar", 1000.0);
	System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	System.out.println("name should be 'Ceasar', name=" + a1.getName());
}

private static void testAccountCreationWithBalanceOnly() {
	System.out.println("-->testAccountCreationWithBalanceOnly()");
	Account a1 = new Account(1000.0);
	System.out.println("balance should be $1000, balance=$" + a1.getBalance());
	System.out.println("name should be 'Unknown', name=" + a1.getName());
}

b. Add calls to these methods by placing these lines of code at the end of main (in AccountTest):

testAccountCreationWithNameAndBalance();
testAccountCreationWithBalanceOnly();

c. Run AccountTest and verify the output.

[bookmark: _Toc111023285]Passing Objects to Methods
How do we pass an object to a method? Answer: the same way we pass a primitive (int, double, etc.) to a method. However, there are some very important subtleties that we will consider in the class.

19. (Read, no action required) Suppose we need a method in the Account class to merge two accounts if the names are the same. By “merge”, we mean that the balance of the input account will be added to the account that is calling the method. In other words, we want a method with this signature:

public void mergeAccount(Account a) {

Remember, this method will be in the Account class. So, the job of this method is to merge this account with the one being passed in, a. The code will look like this:

public void mergeAccount(Account a) {
	if(this.getName().equals(a.getName())) {
		this.balance += a.getBalance();
	}
}

20. Do the following:

a. Add this method to the Account class, near or below the deposit and withdraw methods:

public void mergeAccount(Account a) {
	if(this.getName().equals(a.getName())) {
		this.balance += a.getBalance();
	}
}

b. Add these test methods to the AccountTest class:

private static void testMergeAccount_Successful() {
	System.out.println("-->testMergeAccount_Successful()");
	Account a1 = new Account("Shay", 1000.0);
	Account a2 = new Account("Shay", 500.0);
	a1.mergeAccount(a2);
	System.out.println("balance for a1 should be $1500, balance=$" + a1.getBalance());
}

private static void testMergeAccount_Unsuccessful() {
	System.out.println("-->testMergeAccount_Unsuccessful()");
	Account a1 = new Account("Shay", 1000.0);
	Account a2 = new Account("Wren", 500.0);
	a1.mergeAccount(a2);
	System.out.println("balance for a1 should be $1000, balance=$" + a1.getBalance());
}

c. Add calls to these methods by placing these lines of code at the end of main (in AccountTest):

testMergeAccount_Successful();
testMergeAccount_Unsuccessful();

d. Run AccountTest and verify the output.

[bookmark: _Toc111023286]Arrays of Objects
21. (Read, no action required)

a. We can define an array of objects just as we would an array of primitives:

Account[] accounts = new Account[3];

Account a2 = new Account("Mia", 1000.0);
Account a3 = new Account(1000.0);
Account a4 = new Account("Zeke", 200.0);

accounts[0] = a2;
accounts[1] = a3;
accounts[2] = a4;

for(int i=0; i<accounts.length; i++) {
	System.out.println(accounts[i]);
}

b. Below, we will create a new class, AccountUtilities. This class will be a bit contrived, but is used to show how to pass an array to a method and process it. Really, there is nothing new that you didn’t learn in CS 1301, except that the method we pass to, is in another class. This class will have these members (members is the term we use to collectively refer to the instance variables and the methods):

· There are no instance variables.
· A no-arg constructor that does nothing. This class will not “hold” any data. It just provides “utility” methods for dealing with an array of Accounts, as we see next.
· A getLargestBalance method that accepts an array of Accounts and returns the largest balance of all the accounts that are passed in the array.
· A getLargestAccounts method that accepts two arrays of Accounts. You can assume the two arrays are the same size. This method will return a new array with the Accounts with the largest balances, as they are compared pair-wise. For example:

accounts1 = [(“Zeke”,100), (“Shay”,200), (“Lex”,50)]
accounts2 = [(“Ali”,300), (“Wren”,100), (“Sam”,250)]

	AccountUtilities util = new AccountUtilities();
Accounts[] largest = util.getLargestAccounts(accounts1, accounts2)
Then, largest would contain:

largest = [(“Ali”,300), (“Shay”,200), (“Sam”,250)]

22. Do the following:

a. Create a class named: AccountUtilities in the ver2 package.

b. Replace the code (except the package statement at the top) with:

public class AccountUtilities {

	public AccountUtilities() {}
	
	public double getLargestBalance (Account[] accounts) {
		double maxBal = Double.MIN_VALUE;
		
		for(int i=0; i<accounts.length; i++) {
			double currentBal = accounts[i].getBalance();
			if(currentBal>maxBal) {
				maxBal = currentBal;
			}
		}
		return maxBal;
	}
	
	public Account[] getLargestAccounts (Account[] accounts1, Account[] accounts2) {
		Account[] biggest = new Account[accounts1.length];
		for(int i=0; i<accounts1.length; i++) {
			Account a1 = accounts1[i];
			Account a2 = accounts2[i];
			if(a1.getBalance()>a2.getBalance()) {
				biggest[i] = a1;
			}
			else {
				biggest[i] = a2;
			}
		}
		return biggest;
	}
}

c. Study the code to see how the two methods work. This should be a review from CS 1301.

d. Create a class named: AccountUtilitiesTest in the ver2 package.

e. Replace the code (except the package statement at the top) with:

public class AccountUtilitiesTest {

	public static void main(String[] args) {
		testGetLargestBalance();
		testGetLargestAccounts();
	}
	
	public static void testGetLargestBalance() {
		System.out.println("testGetLargestBalance(accounts)");
		
		// Create an array of accounts
		Account[] accounts = new Account[3];
		Account a1 = new Account("Mia", 1000.0);
		Account a2 = new Account(3000.0);
		Account a3 = new Account("Zeke", 200.0);
		accounts[0] = a1;
		accounts[1] = a2;
		accounts[2] = a3;

		// Create AccountUtilities
		AccountUtilities util = new AccountUtilities();
	
		// Test the method
		double maxBalance = util.getLargestBalance(accounts);

		System.out.println("largest balance should be $3000, maxBalance=$" + maxBalance);
	}

	public static void testGetLargestAccounts() {
		System.out.println("\ntestGetLargestAccounts(accounts1, accounts2)");
		
		// Create an array of accounts
		Account[] accounts1 = new Account[3];
		Account a1 = new Account("Mia", 1000.0);
		Account a2 = new Account(3000.0);
		Account a3 = new Account("Zeke", 200.0);
		accounts1[0] = a1;
		accounts1[1] = a2;
		accounts1[2] = a3;

		// Create another array of accounts
		Account[] accounts2 = new Account[3];
		Account a4 = new Account("Pike", 2000.0);
		Account a5 = new Account("Ann", 500.0);
		Account a6 = new Account("Ivy", 500.0);
		accounts2[0] = a4;
		accounts2[1] = a5;
		accounts2[2] = a6;

		// Create AccountUtilities
		AccountUtilities util = new AccountUtilities();
	
		// Test the method
		Account[] largest = util.getLargestAccounts(accounts1,accounts2);

		System.out.println("Should be: Pike, Unknown, Ivy");
		System.out.println("Actual results:");
		for(int i=0; i<largest.length; i++) {
			System.out.println(largest[i]);
		}
	}

}

f. Study the test methods and verify what they are doing.

g. Run the AccountUtilities class and verify the output.

[bookmark: _Toc111023287]Submission
23. Do the following

a. Make sure all your files are saved in Eclipse.
b. Although not necessary, I recommend closing Eclipse.
c. Zip the two folders (packages) under the src folder: ver1 and ver2 into a zip file named: lab3_lastname.zip

See the last stage of the previous lab if you are uncertain what to do

d. Upload your zip file to the lab3 dropbox in Blazeview.

You are done!

4

image3.png

image4.png

image5.png

image6.png

image7.jpeg

image8.jpeg

image1.jpeg

image2.jpeg

